

KERALA TECHNOLOGICAL UNIVERSITY

B. Tech. Syllabus

KERALA TECHNOLOGICAL UNIVERSITY

Syllabus for I & II Semester B. Tech. Degree 2015

as on 01.07.2015

Kerala Technological University CET Campus, Thiruvananthapuram Kerala -695016 India Phone +91 471 2598122, 2598422 Fax +91 471 2598522 Web: ktu.edu.in Email: university@ktu.edu.in

Table of Contents

Code	Subject	Page
MA 101	Calculus	2
PH 100	Engineering Physics	5
CY 100	Engineering Chemistry	8
BE 100	Engineering Mechanics	10
BE 110	Engineering Graphics	12
BE 101-01	Introduction to Civil Engineering	15
BE 101-02	Introduction to Mechanical Engineering Sciences	17
BE 101-03	Introduction to Electrical Engineering	20
BE 101-04	Introduction to Electronics Engineering	22
BE 101-05	Introduction to Computing and Problem Solving	24
BE 101-06	Introduction to Chemical Engineering	28
BE 103	Introduction to Sustainable Engineering	30
CE 100	Basics of Civil Engineering	33
ME 100	Basics of Mechanical Engineering	36
EE 100	Basics of Electrical Engineering	38
EC 100	Basics of Electronics Engineering	40
MA102	Differential Equations	42
BE 102	Design and Engineering	45
PH 110	Engineering Physics Lab	48
CY 110	Engineering Chemistry Lab	50
CE 110	Civil Engineering Workshop	51
ME 110	Mechanical Engineering Workshop	53
EE 110	Electrical Engineering Workshop	54
EC 110	Electronics Engineering Workshop	55
CS 110	Computer Science Workshop	57
CH 110	Chemical Engineering Workshop	59

Course No.	Course Name	L-T-P-Credits	Year of Introduction
MA101	CALCULUS	3-1-0-4	2015

In this course the students are introduced to some basic tools in Mathematics which are useful in modelling and analysing physical phenomena involving continuous changes of variables or parameters. The differential and integral calculus of functions of one or more variables and of vector functions taught in this course have applications across all branches of engineering. This course will also provide basic training in plotting and visualising graphs of functions and intuitively understanding their properties using appropriate software packages.

Syllabus

Single Variable Calculus and Infinite series, Three dimensional spaces, Functions of several variables, Calculus of vector valued functions, Multiple integrals, and Vector integration.

Expected outcome

At the end of the course the student will be able to model physical phenomena involving continuous changes of variables and parameters and will also have acquired basic training in visualising graphs and surfaces using software or otherwise.

Text Book:

- Anton, Bivens and Davis, Calculus, John Wiley and Sons.
- Pal, S. and Bhunia, S. C., Engineering Mathematics, Oxford University Press, 2015.
- Thomas Jr., G. B., Weir, M. D. and Hass, J. R., Thomas' Calculus, Pearson.

References:

- Bali, N. P. and Goyal, M., Engineering Mathematics, Lakshmy Publications.
- Grewal, B. S., Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- Jordan, D. W. and Smith, P., Mathematical Techniques, Oxford University Press.
- Kreyszig, E., Advanced Engineering Mathematics, Wiley India edition.
- Sengar and Singh, Advanced Calculus, Cengage Learning.
- Srivastava, A. C. and Srivasthava, P. K., Engineering Mathematics Vol. 1, PHI Learning Pvt. Ltd.

Course Plan			
Module	Contents	Hours	Sem. Exam Marks
Ι	Single Variable Calculus and Infinite series(Book I –sec.6.1,	6.4, 6.5,	
	6.8, 9.3 to 9.9)		
	Introduction: Hyperbolic functions and inverses-derivatives	3	
	and integrals. Indeterminate forms, L-Hospital's rule.	5	15 %
	Basic ideas of infinite series and convergence. Convergence		
	tests-comparison, ratio, root and integral tests (without	3	
	proof). Geometric series and p-series. Alternating series,		

	conditional and absolute convergence, Leibnitz test.			
	(For practice and submission as assignment only: Sketching, plotting and interpretation of exponential, logarithmic and hyperbolic functions using suitable software. Demonstration	3		
	of convergence of series by software packages.)			
II	Three dimensional space and functions of more than one varia	ible (Book		
	1 - 11.7, 11.8, 13.1, 13.2)			
	Three dimensional space; Quadric surfaces, Rectangular,			
	Cylindrical and spherical coordinates, Relation between	4		
	coordinate systems,	4		
	Equation of surfaces in cylindrical and spherical coordinate		15 0/	
	Systems, franslation, reflection and rotation.		13 %	
	two variables level curves and surfaces. Limits and	2		
	continuity	2		
	(For practice and submission as assignment only: Tracing of			
	(For practice and submission as assignment only. Tracing of surfaces, graphing quadric surfaces, graphing functions of	2		
	two variables using software packages)	2		
	FIRST INTERNAL FXAM			
III	Dential derivatives and its applications/Deals Lass 12.2 to 12	5 and		
	13.8)	o.o and		
	Partial derivatives–Partial derivatives of functions of more			
	than two variables - higher order partial derivatives -	4		
	differentiability, differentials and local linearity.		15 %	
	The chain rule – Maxima and Minima of functions of two			
	variables - extreme value theorem (without proof)-relative	-		
	extrema.; Taylor's series expansion of functions of two	5		
	variables.			
IV	Calculus of vector valued functions (Book I-12.1-12.6, 13.6,1	3.7, 14.9)		
	Introduction to vector valued functions- parametric curves			
	in 3-space—Parametric equations for intersection of	2		
	surfaces.			
	Limits and continuity – derivatives - tangent lines –			
	derivative of dot and cross product-definite integrals of	2	15 %	
	vector valued functions.			
	Change of parameter-arc length-unit tangent-normal-			
	binormal-curvature-motion along a curve -velocity-	2		
	acceleration and speed - Normal and tangential components	2		
	of acceleration.			

	Directional derivatives and gradients-tangent planes and normal vectors-Lagrange multiplier method - extremum problem with constraint (vector approach) (For practice and submission as assignment only: Graphing parametric curves and surfaces using software packages)	4	
	SECOND INTERNAL EXAM		
V	Multiple integrals (Book I-sec. 14.1, 14.2, 14.3, 14.5, 14.6	4.7)	
	Double integrals- Evaluation of double integrals – Double integrals in non-rectangular coordinates- reversing the order of integration.	3	
	Area calculated as double integral- Double integrals in polar coordinates.	2	20.%
	Triple integrals-volume calculated as triple integral- triple integrals in cylindrical and spherical coordinates.	2	20 /0
	Converting triple integrals from rectangular to cylindrical coordinates - converting triple integrals from rectangular to spherical coordinates - change of variables in multiple integrals - Jacobians (applications of results only)	3	
VI	Vector integration(Book I sec. 15.1, 15.2, 15.3, 15.4, 15.5, 15	.7, 15.8)	
	Vector and scalar fields- Gradient fields – conservative fields and potential functions – divergence and curl - the ∇ operator - the Laplacian ∇^2	3	
	Line integrals - work as a line integral- independence of path-conservative vector field.	3	20 %
	Green's Theorem (without proof- only for simply connected region in plane), surface integrals – Divergence Theorem (without proof), Stokes' Theorem (without proof) (For practice and submission as assignment only: graphical representation of vector fields using software packages)	4	
	END SEMESTER EXAM	I	1

Open source software packages such as gnuplot, maxima, scilab, geogebra or R may be used as appropriate for practice and assignment problems.

TUITORIALS: Tutorials can be ideally conducted by dividing each class in to two groups. Prepare necessary materials from each module that are to be taught using computer. Use it uniformly to every class.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
PH100	ENGINEERING PHYSICS	3-1-0-4	2015

Most of the engineering disciplines are rooted in Physics. In fact a good engineer is more or less an applied physicist. This course is designed to provide a bridge to the world of technology from the basics of science and to equip the students with skills in scientific inquiry, problem solving, and laboratory techniques.

Syllabus

Harmonic Oscillations: Damped and Forced Harmonic Oscillations. Waves: One Dimensional and Three Dimensional waves, Interference: Interference in thin films (Reflected system) Diffraction: Fraunhofer and Fresnel Diffraction, Grating, Polarization of Light: Double refraction, production and detection of polarized light, Superconductivity: Properties and Applications. Quantum Mechanics: Schrodinger Equations- Formulation and Solution, Operators, Applications. Statistical Mechanics: Microstates and macro states Maxwell - Boltzmann, Bose-Einstein and Fermi Dirac statistics. Fermi level and its significance. Acoustics: Intensity of sound, Reverberation and design concepts, Ultrasonics: Production, Detection and Applications, NDT methods, Lasers: Properties, Working Principles, Practical Lasers. Photonics: Basics of Solid State lighting, Photo detectors, Solar Cells, Fiber Optics.

Expected outcome

Familiarity with the principles of Physics and its significance in engineering systems and technological advances.

References:

- Aruldhas, G., Engineering Physics, PHI Ltd.
- Beiser, A., Concepts of Modern Physics, McGraw Hill India Ltd.
- Bhattacharya and Tandon, Engineering Physics, Oxford India
- Brijlal and Subramanyam, A Text Book of Optics, S. Chand & Co.
- Dominic and Nahari, A Text Book of Engineering Physics, Owl Books Publishers
- Hecht, E., Optics, Pearson Education
- Mehta, N., Applied Physics for Engineers, PHI Ltd
- Palais, J. C., Fiber Optic Communications, Pearson Education
- Pandey, B. K. and Chathurvedi, S., Engineering Physics, Cengage Learning
- Philip, J., A Text Book of Engineering Physics, Educational Publishers
- Premlet, B., Engineering Physics, Mc GrawHill India Ltd
- Sarin, A. and Rewal, A., Engineering Physics, Wiley India Pvt Ltd
- Sears and Zemansky, University Physics, Pearson
- Vasudeva, A. S., A Text Book of Engineering Physics, S. Chand & Co

Web:			
WWW.	physics.org		
www.	physics about com		
<u></u>	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
Ι	Harmonic Oscillations: Differential equation of damped harmonic oscillation, forced harmonic oscillation and their solutions- Resonance, Q factor, Sharpness of resonance- LCR circuit as an electrical analogue of Mechanical Oscillator (Qualitative)	5	15%
	Waves: One dimensional wave - differential equation and solution. Three dimensional waves - Differential equation & its solution. (No derivation) Transverse vibrations of a stretched string.	4	
II	Interference: Coherence. Interference in thin films and wedge shaped films (Reflected system) Newton's rings-measurement of wavelength and refractive index of liquid Interference filters. Antireflection coating.	5	
	Diffraction Fresnel and Fraunhofer diffraction. Fraunhofer diffraction at a single slit. Plane transmission grating. Grating equation - measurment of wavelength. Rayleigh's criterion for resolution of grating- Resolving power and dispersive power of grating.	4	15%
	FIRST INTERNAL EXAM	l	
III	Polarization of Light: Types of polarized light. Double refraction. Nicol Prism. Quarter wave plate and half wave plate. Production and detection of circularly and elliptically polarized light. Induced birefringence- Kerr Cell - Polaroid & applications.	4	150/
	Superconductivity: Superconducting phenomena. Meissner effect. Type-I and Type-II superconductors. BCS theory (qualitative). High temperature superconductors - Josephson Junction - SQUID- Applications of superconductors.	5	- 15%
IV	Quantum Mechanics: Uncertainty principle and its applications- formulation of Time dependent and Time independent Schrödinger equations- physical meaning of wave function- Energy and momentum Operators-Eigen values and functions- One dimensional infinite square well potential .Quantum mechanical Tunnelling (Qualitative) Statistical Mechanics: Macrostates and Microstates. Phase space. Basic	6	15%
	postulates of Maxwell- Boltzmann, Bose-Einstein and Fermi Dirac	3	

	statistics. Distribution equations in the three cases (no derivation). Fermi		
	Level and its significance.		
	SECOND IN IERNAL EXAM		
V	Acoustics: Intensity of sound- Loudness-Absorption coefficient -		
	Reverberation and reverberation time- Significance of reverberation time-	4	
	Sabine's formula (No derivation) -Factors affecting acoustics of a building.		
	Ultrasonics: Production of ultrasonic waves - Magnetostriction effect and		20%
	Piezoelectric effect - Magnetostriction oscillator and Piezoelectric		
	oscillator - Detection of ultrasonics - Thermal and piezoelectric methods-		
	Applications of ultrasonics - NDT and medical.		
VI	Laser: Properties of Lasers, absorption, spontaneous and stimulated		
	emissions, Population inversion, Einstein's coefficients, Working principle		
	of laser, Optial resonant cavity. Ruby Laser, Helium-Neon Laser,	5	
	Semiconductor Laser (qualitative). Applications of laser, holography		
	(Recording and reconstruction)		
	Photonics: Basics of solid state lighting - LED - Photodetectors - photo		200/
	voltaic cell, junction & avalanche photo diodes, photo transistors, thermal		20%
	detectors, Solar cells- I-V characteristics - Optic fibre-Principle of		
	propagation-numerical aperture-optic communication system (block	5	
	diagram) - Industrial, medical and technological applications of optical		
	fibre. Fibre optic sensors - Basics of Intensity modulated and phase		
	modulated sensors.		
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P-Credits	Year of Introduction
CY100	ENGINEERING CHEMISTRY	3-1-0-4	2015

To enable the students to acquire knowledge in the concepts of chemistry for engineering applications and to familiarize the students with different application oriented topics like new generation engineering materials, storage devices, different instrumental methods etc. And to develop abilities and skills that are relevant to the study and practice of chemistry.

Syllabus

Spectroscopy - Principles and Applications, Electrochemistry - Electrodes, Electrochemical series and applications, Nernst Equation, Potentiometric titration and application, Cells, Instrumental Methods-Thermal Analysis, Chromatography; Conductivity, Chemistry of Engineering Materials, Copolymers, Conducting Polymers, Advanced Polymers, Nano materials, Fuels and Calorific value; Lubricants and their properties, Water Technology - Hardness, Water softening methods, Sewage water Treatment.

Expected outcome

The student will be able to apply the knowledge of chemistry and will be equipped to take up chemistry related topics as part of their project works during higher semester of the course.

- Ahad, J., Engineering Chemistry, Jai Publications
- Dara, S. S., Engineering Chemistry, S Chand Publishers
- Fernandez, A., Engineering Chemistry, Owl Book Publishers, ISBN 9788192863382
- Jain and Jain, Engineering Chemistry, Dhanpat Rai Publishers
- Kaurav, Engineering Chemistry with Laboratory Experiments. PHI, ISBN 9788120341746
- Manjooran K. S., Modern Engineering Chemistry, Kannatheri Publication
- Seymour, R. B., Introduction to Polymer Chemistry, McGraw Hill
- Rath, P., Engineering Chemistry, Cengage Learning, ISBN 9788131526699
- Wiley India, Engineering Chemistry, ISBN 9788126543205

	Course Plan			
Module	Contents	Hours	Sem.	
			Exam	
			Marks	
Ι	Spectroscopy: Introduction, Beer Lamberts Law (worked out examples)	1		
	UV-visible spectroscopy - Principle, Instrumentation and applications	2		
	IR spectroscopy - Principle and applications	2	15%	
	¹ H NMR spectroscopy - Principle, chemical shift - spin - spin splitting and applications including MRI	4		
II	Electrochemistry: Different types of electrodes (general) – SHE, Calomel electrode, Glass electrode and determination of E^0 using SHE & Calomel	2	15%	

	electrode		
	Electrochemical series and its applications.	1	
	Nernst equation for an electrode- Derivation, application & numericals	2	
	Potentiometric titration - Acid-base and redox titration	2	
	Lithium ion cell and Fuel cell.	1	
	FIRST INTERNAL EXAM	<u>L</u>	
III	Instrumental Methods: Thermal analysis - Principle, instrumentation and applications of TGA and DTA.	3	
	Chromatographic methods - Basic principles, column, TLC. Instrumentation and principles of GC and HPLC.	4	15%
	Conductivity - Measurement of conductivity	1	-
IV	Chemistry of Engineering Materials: Copolymers - BS, ABS - Structure and Properties.	1	
	Conducting Polymers - Polyaniline, Polypyrrole - Preparation, Structure and Properties.	2	
	OLED – An introduction	1	
	Advanced Polymers – Kevlar, Polybutadiene rubber and silicone rubber: Preparation, Structure and Properties.	2	15%
	Nanomaterials – Definition, Classification, chemical methods of preparation - hydrolysis and reduction	2	
	Properties and Applications – Carbon Nano Tubes and fullerenes.	1	
	SECOND INTERNAL EXAM		
V	Fuels and Lubricants: Fuels - Calorific Value, HCV and LCV - Determination of calorific value of a solid and liquid fuel by Bomb calorimeter - Dulongs formula and Numericals.	3	
	Liquid fuel - Petrol and Diesel - Octane number & Cetane number	1	
	Biodiesel - Natural gas.	2	20%
	Lubricant - Introduction, solid, semisolid and liquid lubricants.	1	-
	Properties of lubricants - Viscosity Index, Flash point, Fire point, Cloud point, Pour point and Aniline point.	2	
VI	Water Technology: Types of hardness, Units of hardness, Estimation of Hardness – EDTA method. Numericals based on the above	3	
	Water softening methods - Ion exchange process - Principle. Polymer ion exchange.	2	20%
	Reverse Osmosis - Disinfection method by chlorination and UV	1	
	Dissolved oxygen, BOD and COD.	2	
	Sewage water Treatment - Trickling Filter and UASB process.	1	
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P-Credits	Year of Introduction
BE100	ENGINEERING MECHANICS	3-1-0-4	2015
0 011			

- 1. To apply the principles of mechanics to practical engineering problems.
- 2. To identify appropriate structural system for studying a given problem and isolate it from its environment.
- 3. To develop simple mathematical model for engineering problems and carry out static analysis.
- 4. To carry out kinematic and kinetic analyses for particles and systems of particles.

Syllabus

Statics: Fundamental concepts and laws of mechanics; Force systems; Principle of moments; Resultant of force and couple systems; Equilibrium of rigid body; Free body diagram; Equilibrium of a rigid body in three dimension; Support reactions; Properties of surfaces and solids - Centroid, Moment of inertia, Polar moment of inertia, Mass moment of inertia, Product of inertia and Principal moment of inertia; Theorems of Pappus – Guldinus; Friction; Principle of virtual work.

Dynamics: Rectangular and cylindrical coordinate system; Combined motion of rotation and translation; Newton's second law in rectilinear translation; D' Alembert's principle; Mechanical vibration; Simple harmonic motion; Spring-mass model.

Expected outcome

- 1. Students will be able to apply and demonstrate the concepts of mechanics to practical engineering problems.
- 2. Students will be able to determine the properties of planes and solids.
- 3. Students will be able to apply fundamental concepts of dynamics to practical problems.

Text Books:

- Shames, I. H., Engineering Mechanics Statics and Dynamics, Pearson Prentice
- Timoshenko, S. & Young D. H., Engineering Mechanics, McGraw Hill

- Babu, J., Engineering Mechanics, Pearson Prentice Hall
- Beer and Johnson, Vector Mechanics for Engineers Statics and Dynamics, Tata McGraw Hill Publishing Company Limited
- Benjamin J., Engineering Mechanics, Pentex Book Publishers and Distributors
- Bhavikkatti, S. S., Engineering Mechanics, New Age International Publishers
- Hibbeler, R. C., Engineering Mechanics: Statics and Dynamics. Pearson Prentice Hall
- Kumar, K. L., Engineering Mechanics, Tata McGraw Hill Publishing Company Limited
- Merriam J. L. and Kraige L. G., Engineering Mechanics Vol. I and II, John Wiley
- Rajasekaran S. and Sankarasubramanian, G., Engineering Mechanics, Vikas Publishing House Private Limited
- Tayal, A. K., Engineering Mechanics- Statics and Dynamics, Umesh Publications

	Course Plan				
Module	Contents	Hours	Sem. Exam Marks		
Ι	Statics: Fundamental concepts and laws of mechanics - Rigid body -	2			
	Principle of transmissibility of forces	2			
	Coplanar force systems - Moment of a force – Principle of moments	2	15%		
	Resultant of force and couple system	4	1370		
	Equilibrium of rigid body - Free body diagram - Conditions of	2			
	equilibrium in two dimensions – Two force and three force members.	3			
II	Types of supports – Problems involving point loads and uniformly distributed loads only.	5	1.50/		
	Force systems in space – Degrees of freedom – Free body diagram – Equations of equilibrium – Simple resultant and Equilibrium problems.	4	15%		
	FIRST INTERNAL EXAM				
III	Properties of planar surfaces - Centroid and second moment of area				
	(Derivations not required) - Parallel and perpendicular axis theorem -	3			
	Centroid and Moment of Inertia of composite area.				
	Polar Moment of Inertia – Radius of gyration – Mass moment of inertia	2	15%		
	of cylinder and thin disc (No derivations required).	Z			
	Product of inertia – Principal Moment of Inertia (conceptual level).	3			
	Theorems of Pappus and Guldinus.	1			
IV	Friction – Characteristics of dry friction – Problems involving friction of	6			
	ladder, wedges and connected bodies.	0	150/		
	Definition of work and virtual work - Principle of virtual work for a	4	13%		
	system of connection bodies – Problems on determinate beams only.	4			
	SECOND INTERNAL EXAM				
V	Dynamics: Rectangular and Cylindrical co-ordinate system	1			
	Combined motion of rotation and translation – Concept of instantaneous centre – Motion of connecting rod of piston and crank of a reciprocating pump.	4	20%		
	Rectilinear translation – Newton's second law – D'Alembert's Principle – Application to connected bodies (Problems on motion of lift only).	4			
VI	Mechanical vibrations – Free and forced vibration - Degree of freedom.	1	0 001		
	Simple harmonic motion – Spring-mass model – Period – Stiffness – Frequency – Simple numerical problems of single degree of freedom	7	20%		
	END SEMESTER EXAM	1			

Course No.	Course Name	L-T-P-Credits	Year of Introduction			
BE110	*ENGINEERING GRAPHICS	1-1-2-3	2015			
*As this cour	*As this course is practical oriented, the evaluation is different from other lecture based courses.					
Points to not	e:					
(1) End s	emester examination will be for 50 marks and of	2 hour duration.				
(2) End s	emester exam will include all modules except M	odule IV.				
(3) 100 n	harks are allotted for internal evaluation: first in	nternal exam 40 mark	s, second internal exam 40			
(4) The f	and class exercises 20 marks.	and II and the secon	nd internal exam will be a			
(+) The I	cal exam based on Module IV alone	and if and the secon	lu internar exam win be a			
Course Obj	ectives					
To enable t	he student to be able to effectively con	nmunicate basic de	signs through graphical			
representatio	ns as per standards.					
Syllabus	1					
Introduction	to Engineering Graphics; Orthographic proj	ections of lines and s	solids, Isometric			
projection, F	reehand sketching, Introduction to CAD, Se	ctions of solids, Dev	elopment of surfaces,			
Perspective p	projection.		-			
Expected ou	tcome		mulished the following			
opilities and	ssiul completion of this course, the stude	nt would have acco	Simplifished the following			
1 Eundom	skills.					
1. Fundani 2 Dimensi	oning and preparation of peat drawings and	drawing sheets				
2. Difficilist	ation of engineering drawings	drawing sheets.				
4 The feat	ures of CADD software					
References I	Books:					
•	Agrawal, B. and Agrawal, C. M., Engineering	ng Drawing, Tata M	cGraw Hill Publishers			
•	Anilkumar, K. N., Engineering Graphics, A	dhyuth Narayan Pub	lishers			
•	Benjamin, J., Engineering Graphics, Pentex	Publishers				
•	Bhatt, N., D., Engineering Drawing, Charot	ar Publishing House	Pvt Ltd.			
•	Duff, J. M. and Ross, W. A., Engineering I	Design and Visualiza	ation, Cengage Learning,			
	2009	C				
•	John, K. C., Engineering Graphics, Prentice	Hall India Publisher	rs			
•	Kulkarni, D. M., Rastogi, A. P. and Sarkar,	A. K., Engineering	Graphics with AutoCAD,			
	PHI 2009					
•	Luzadder, W. J. and Duff, J. M., Fundament	tals of Engineering I	Drawing, PHI 1993			
•	Parthasarathy, N. S., and Murali, V., Engine	ering Drawing, Oxfo	ord University Press			
	12					

	Varghese, P. I., Engineering Graphics, V I P Publishers			
	• Venugopal, K., Engineering Drawing & Graphics, New Age Internation	al Publi	shers	
	Course Plan			
Module	Contents	Hours	Sem. Exam Marks	
Ι	6 exercises Introduction to Engineering Graphics: Need for engineering drawing. Drawing instruments; BIS code of practice for general engineering drawing. Orthographic projections of points and lines:-Projections of points in different quadrants; Projections of straight lines inclined to one of the reference planes, straight lines inclined to both the planes; True length and inclination of lines with reference planes; Traces of lines.	10	20%	
II	12 exercises Orthographic projections of solids:-Projections of simple solids* in simple positions, projections of solids with axis inclined to one of the reference planes and axis inclined to both the reference planes.	09	20%	
	FIRST INTERNAL EXAM			
III	 12 exercises Isometric Projections:-Isometric projections and views of plane figures simple* and truncated simple* solids in simple position including sphere and hemisphere and their combinations. Freehand sketching: Freehand sketching of real objects, conversion of pictorial views into orthographic views and vice versa. 	07	20%	
IV	6 exercises Introduction to Computer Aided Drafting - familiarizing various coordinate systems and commands used in any standard drafting software - drawing of lines, circle, polygon, arc, ellipse, etc. Creating 2D drawings. Transformations: move, copy, rotate, scale, mirror, offset and array; trim, extend, fillet, chamfer. Dimensioning and text editing. Exercises on basic drafting principles, to create technical drawings. Create orthographic views of simple solids from pictorial views. Create isometric views of simple solids from orthographic views. Solid modelling and sectioning of solids, extraction of 2D drawings from solid models. (For internal examination only, not for University Examination).	14	Internal	
	SECOND INTERNAL EXAM	L		
V	9 exercises	10	20%	

	Sections and developments of solids: - Sections of simple* solids in simple vertical positions with section plane inclined to one of the reference planes - True shapes of sections. Developments of surfaces of these solids.		
VI	6 exercises Intersection of surfaces: - Intersection of prism in prism and cylinder in cylinder - axis bisecting at right angles only. Perspective projections: - perspective projections of simple* solids.	06	20%
*Tri Not	iangular, square, pentagonal and hexagonal prisms, pyramids, cones and cylin e: First angle projection to be followed	ders.	
END SEMESTER EXAM			

Course N	o. Course Name	L-T-P-Credits	Year of Int	roduction	
BE101-	1 INTRODUCTION TO CIVIL	2-1-0-3	20	15	
	ENGINEERING				
Course (bjectives				
1. To p	ovide the students an overview of the profession of	f Civil Engineering	5.		
2. To g	ve the students an illustration of the use and pro	perties of various	building ma	terials and	
expla	in the building construction aspects.				
Syllabus					
Civil Eng	ineering as a profession; General introduction to	history of Civil l	Engineering;	types and	
classifica	ion of buildings; setting out of a building; Bu	ilding materials -	Stones, Bri	cks, Tiles,	
Cement,	Aggregate, Cement mortar, Timber, Steel; Build	ing Construction -	Stone Maso	onry, Brick	
Masonry,	Floors and flooring, Roofs and roof coverings.				
Expected	outcome				
I. Stud	nts will be able to explain the importance of Civil	Engineering in the	infrastructur	al	
deve	opment of the society.		1	1	
2. They	will be able to illustrate the types, uses and proper	ties of various buil	ding materia	ls.	
3. Stud	nts will be able to explain the method of construct	on of different cor	nponents of	a building.	
Referenc	S BOOKS:	• • • • • • •		1	
• C	en, W. F. and Liew, J. Y. R., (Eds.), The Civil Eng	gineering Handboo	k, Second E	dition,	
	C Press (Taylor and Francis)				
• D	Ial, K. R., Essentials of Civil Engineering, Charota	ar Publishing Hous	e		
• 6	pi, S., Basic Civil Engineering, Pearson Publishers	S			
• K	ndya, A. A., Elements of Civil Engineering, Charc	otar Publishing hou	ise		
• M	amlouk, M. S. and Zaniewski, J. P., Materials for C	Civil and Construct	ion Engineer	rıng,	
P	arson Publishers.	• • • • • • • •			
• M	cKay, W. B. and McKay, J. K., Building Construct	10n Volumes 1 to 4	4, Pearson In	d1a	
E	ucation Services				
• R	ngwala, S. C. and Dalal, K. B., Engineering Mater	ials, Charotar Publ	ishing house	\$	
• R	ngwala, S. C. and Dalal, K. B., Building Construct	tion, Charotar Publ	ishing house)	
	Course Plan				
Module	Contents		Hours	Sem. Evam	
Moune	Contents		nours	Marks	
Ι	General introduction to Civil Engineering	- History of C	ivil		
	Engineering - Relevance of Civil Engineering in the overall 2				
	infrastructural development of the country.			15%	
	Types and classification of structures - building	gs, towers, chimne	eys,		
	bridges, dams, retaining walls, water tanks, si	los, roads, railwa	iys, ³		

	runways and pipelines (Brief description only)		
	Definition and types of buildings as per National Building Code of		
	India (brief description only).	1	
	Selection of site - Components of a building and their functions -	2	
	Setting out of a building.	2	
II	Stones: Classification of stones - Qualities of good building stones -		
	Quarrying - Dressing - Tests - Specifications - Uses of common	2	
	building stones.		150/
	Bricks: Composition of good brick earth - Classification - Qualities of	2	15%
	good bricks - Field and laboratory tests - Specifications.	Z	
	Tiles: Classification - Manufacture - Properties - Tests - Specifications	3	
	FIRST INTERNAL EXAM		
III	Cement: Basic Ingredients - Manufacturing process - Grades -	4	
	Properties - Tests - Specifications.	4	150/
	Aggregates: Fine and coarse aggregate - Properties - Uses - Tests.	3	15%
	Cement Mortar: Types and preparation.	1	
IV	Stone Masonry: Types - Details of Ashlar, Random Rubble, Coarse	2	
	Rubble and Dry Rubble Masonry.	3	
	Brick Masonry: Types - Bond - Introduction to all types of bonds -		15%
	English bond in detail (1, 1 ¹ / ₂ and 2 brick walls) - Comparison of stone	4	
	and brick masonry.		
	SECOND INTERNAL EXAM		
V	Timber: Properties - Uses - Classification - Seasoning - Defects -		
	Preservation - Tests; Hard board and Particle board - Manufacture and	3	
	use.		20%
	Steel: Structural steel and steel as reinforcement - Types - Properties -	2	
	Uses - Market forms.	3	
VI	Floors and Flooring materials: Different types and selection of floors	2	
	and floor coverings.	3	2004
	Roofs and roof coverings: Different types of roofs - Suitability - Types	2	20%
	and selection of roofing materials.	3	
END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction				
BE101-02	INTRODUCTION TO MECHANICAL ENGINEERING SCIENCES	2-1-0-3	2015				
Course Obje	Course Objectives						
1. To int	troduce different disciplines of Mechanical Engi	ineering					
2. To kin	ndle interest in Mechanical Engineering						
3. To im	part basic mechanical engineering principles						
Syllabus							
Thermodynam	mics & Power sources, Thermal Engineering	g, Refrigeration	and Air Conditioning,				
Automobile &	& Aeronautical Engineering, Mechanisms & Ma	chines, Materials	and manufacturing.				
Expected ou	tcome	11.00					
At the end of	the course, the students will have exposed to th	e different areas o	f Mechanical				
Engineering;	gained idea about nature, scope and application	s of Mechanical E	ingineering principles.				
References F	Sooks.						
	ossat R. J. Principles of Refrigeration PHI						
• D	even of L. Internal Combustion Engine Fundar	nentale McGraw	Hill Publishers				
• 11	olman I P. Thermodynamics McGraw Hill C	nentais, meoraw					
• 11	in K K and Asthana P B Automobile Engin	o. Dearing TTTI Bho	mal				
• Ja	alpakijan S and Schmid S P. Manufacturing	Processes for Eng	ipaering Materials				
Pe	earson education	Tiocesses for Eng	meeting Wateriais,				
• M	laines, R., Landmarks in Mechanical Engineerin	lg, ASME					
• M	lenon, R. V. G., The Development of Science &	Technology.					
• Pe	eng, W. W., Principles of Turbomachinery, John	n Wiley & Sons					
• Pi	ta, E. G., Air Conditioning Principles & System	is, PHI					
• Sl Pr	nigley, J. E. and Uicker, J. J., Theory of Machine ress	es & Mechanisms	, Oxford University				
• SI	nigley, J. E., Mechanical Engineering Design, M	IcGraw Hill Publi	shers				
• S ₁ (P	palding, D. B. and Cole, E. H., Engineering The Pub) Ltd.	rmodynamics, EL	BS & Edward Arnold				
• St	one, R. and Ball, T. K., Automotive Engineerin	g Fundamentals, S	SAE International				
• St	utton, G. P. and Ross, D. M., Rocket Propulsion	Elements, John W	Viley & Sons				
• V D	 Von Karman, T., Aerodynamics: Selected Topics in the Light of Their Historical Development, Courier Corporation 						
• O	nline course on Refrigeration & Air conditionin	g, IIT Kharagpur	www.nptel.ac.in				

	Course Plan					
Module	Contents	Hours	Sem. Exam Marks			
Ι	Thermodynamics : Nature and scope of thermodynamics; Basic concepts ; Laws of thermodynamics- Discovery, Significance & Applications; Qualitative ideas on Entropy, Available energy, Irreversibility, Clausius Inequality, Principle of increase of entropy & Carnot engine; Limitations of Thermodynamics; Sources of power; history of power production; power production in the future.	7	15%			
II	Thermal Engineering: Historical development of steam engine, steam turbines, gas turbines and hydraulic turbines; Principle of turbomachinery; History of IC engines; two stroke and four stroke engines-working, applications; Air compressors- types and uses; Principles of Rocket propulsion, chemical rockets, Indian space programme	7	15%			
	FIRST INTERNAL EXAM					
111	Retrigeration & Air Conditioning: History & scope of refrigeration; applications of refrigeration; Food preservation, refrigerated storage; applications in chemical and process industries; special applications; Air conditioning- Principles & systems; scope of air conditioning; Components of A/c systems, all-air and all-water A/c systems;, Psychrometric properties of air; Human comfort; comfort standards.	7	15%			
IV	Automobile & Aeronautical Engineering: Introduction to an Automobile; history of the automobile; Indian Automobiles; Types of automobiles; Layout of an automobile; Major components and their functions; Manufacturers of motor vehicles in India; Fundamentals of aerodynamics; theory of lift and drag; aircraft engines-types and applications.	7	15%			
	SECOND INTERNAL EXAM					
V	Mechanisms & Machines: Introduction; Analysis and synthesis; terminology; definitions & assumptions; planar, spherical and spatial mechanisms, examples of mechanisms; mobility; classification of mechanisms; Grashof's law; mechanical advantage; Mechanical Engineering design; types of design; design considerations; types of loads; factor of safety; codes & standards; economics of design; reliability; safety.	7	20%			
VI	Manufacturing Engineering & Materials: Introduction and history of	7	20%			

	materials and manufacturing; engineering materials; metals, alloys,		
	composites, microstructures, heat treatment, physical properties of		
	materials and material testing; methods of manufacturing; examples of		
	manufactured products; Computer Integrated manufacturing; lean		
	production & agile manufacturing; environmentally conscious design &		
	manufacturing; organization for manufacture.		
END SEMESTER EXAM			

Course	No. Course Name	L-T-P-Credits	Year	of Intr	oduction
BE101	-03 INTRODUCTION TO ELECTRICAL ENGINEERING	2-1-0-3		2015	5
Course	Objectives				
The obj	ective of this course is to set a firm and solid four	dation in Electrical 1	Engine	ering wi	th strong
analytic	al skills and conceptual understanding of basic l	aws and analysis m	ethods	in elect	rical and
magneti	c circuits.				
Syllabu	S				
Fundam	ental Concepts of Circuit Elements and Circuit va	riables, Real and Id	eal inde	epender	t voltage
and cur	rent sources, V-I relations; Basic Circuit Law	s, Analysis of resis	tive ci	rcuits,	Magnetic
Circuits	, Electromagnetic Induction; Alternating current	fundamentals, Phas	sor Co	ncepts,	Complex
represer	tation, Phasor analysis of RL, RC, RLC circuit,	dmittances; Comple	ex Pow	er, Reso	onance in
series an	nd parallel circuits; Three-phase systems, analysis	s of balanced and un	balanc	ed star	and delta
connect	ed loads; Wiring systems, Earthing, Protective dev	ices.			
Expecte	ed outcome				
The cou	rse will enable students to learn advanced topics in	n Electrical Engineer	ing.		
Referen	aces Books:				
•	• Bhattacharya, S. K., Basic Electrical & Electro	nics Engineering, Pe	arson		
•	• Bird, J., Electrical Circuit Theory and Technol	ogy, Routledge, Tayl	or & F	rancis (Broup
•	• Edminister, J., Electric Circuits, Schaum's Out	ine Series, Tata McO	Graw H	ill	
	• Hayt, W. H., Kemmerly, J. E., and Durbin, S. I	A., Engineering Circ	uit Ana	alysis, T	ata
	McGraw Hill				
•	 Hughes, Electrical and Electronic Technology, 	Pearson Education			
	• Parker and Smith, Problems in Electrical Engin	eering, CBS Publish	ers and	l Distril	outors
	 Sudhakar and Syam Mohan, Circuits and Netw 	orks Analysis and S	ynthesi	s, Tata I	McGraw
	Hill				
	• Suresh Kumar, K. S, Electric Circuits and Netw	vorks, Pearson Education	ation		
	Course Plan				
	6				Sem.
Module	Contents			Hours	Exam Marks
I	Fundamental Concepts of Circuit Elements and C	Circuit variables:			112441 IMJ
	Electromotive force, potential and voltage	Resistors. Capac	itors.		
	Inductors- terminal V-I relations. Basic Circuit	Laws: Kirchhoff's cu	irrent	_	4 -
	and voltage laws, analysis of resistive circuits - r	nesh, node analysis,	super	6	15%
	mesh and super node analysis. Star delta tr	ansformation. Num	erical		
	problems.				
II	Magnetic Circuits: Magneto motive force, flux,	reluctance, permeat	oility-	9	15%

	comparison of electric and magnetic circuits analysis of series and parallel			
	magnetic circuits, magnetic circuits with air-gaps. Electromagnetic			
	Induction: Faraday's laws, Lenz's law, statically and dynamically induced			
	emf, self and mutual inductance, coupling coefficient. Real and Ideal			
	independent voltage and current sources, V-I relations. Passive sign			
	convention. Numerical problems.			
	FIRST INTERNAL EXAM			
III	Alternating current fundamentals: Frequency, Period, RMS and average			
	values, peak factor and form factor of periodic waveforms (pure sinusoidal			
	and composite waveforms). Phasor Concepts, Complex representation			
	(exponential, polar and rectangular forms) of sinusoidal voltages and	9	15%	
	currents, phasor diagrams, Complex impedance - series and parallel			
	impedances and admittances. Phasor analysis of RL, RC, RLC circuits.			
	Numerical problems.			
IV	Complex Power: Concept of power factor - active, reactive power and			
	apparent power. Resonance in series and parallel circuits: Energy,	5	15%	
	bandwidth and quality factor, variation of impedance and admittance in	5	10/0	
	series and parallel resonant circuits. Numerical problems.			
	SECOND INTERNAL EXAM			
V	Three-phase systems: Star and delta connections, three-phase three wire			
	and three-phase four-wire systems, analysis of balanced and unbalanced			
	star and delta connected loads, power in three-phase circuits. Active and	8	20%	
	Reactive power measurement by one, two, and three wattmeter methods.			
	Numerical problems.			
VI	Wiring systems: Basic concepts of wiring (conduit wiring only), service			
	mains, meter board and distribution board. Earthing: Earthing of	5	20%	
	installations - necessity of earthing, plate & pipe earthing. Protective		_0/0	
	devices: protective fuses, MCB, ELCB.			
	END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction		
BE101-04	INTRODUCTION TO ELECTRONICS ENGINEERING	2-1-0-3	2015		
Course Objectives					
1. To get basic idea about types, specification and common values of passive components					
2. To famil	iarize the working and characteristics of diodes	, transistors and M	IOSFETS		

- 3. To understand working of diodes in circuits and in rectifiers
- 4. To familiarize some measuring instruments

Syllabus

Evolution and Impact of Electronics, Familiarization of Resistors, Capacitors, Inductors, Transformers and Electro mechanical components, Semiconductors, PN junction diode, Zener diode, LED, photo diode, Bipolar Junction Transistors: Structure, principle of operation, different configurations, load line and operating point, biasing and stabilization, Transistor as amplifier, switch, Junction Field Effect Transistors: Structure, principle of operation, characteristics MOSFET: Structure, principle of operation, characteristics, Principle of operation of Photo transistor, UJT, SCR, Diode circuits and power supplies: Series and parallel diode circuits, Half-wave & full wave rectifiers, capacitor filter, zener voltage regulator, Electronic Measurements and measuring Instruments: Performance parameters, Analog and digital multimeter, CRO, DSO, function generator, Testing of Electronic components.

Expected outcome

Student can identify the active and passive electronic components and can design and setup simple circuits using diodes and transistors. Voltage and currents can be measured and monitored using electronic measuring instruments

- Bell, D. A., Electronic Devices and Circuits, Oxford University Press
- Boylested, R. L. and Nashelsky, L., Electronic Devices and Circuit Theory, Pearson Education
- Kal, S., Basic Electronics: Devices, Circuits and its Fundamentals, PHI Learning
- Millman, J., Halkias, C. and Parikhu, C. D., Integrated Electronics, Tata Mc Graw Hill
- Neaman, D. A., Electronic Circuits Analysis and Design, McGraw Hill
- Sedra, A. S. and Smith, K. C., Microelectronic Circuits, Oxford University Press

Course Plan				
Module	Contents	Hours	Sem. Exam Marks	
Ι	Evolution of Electronics, Impact of Electronics in industry and in society.	1		
	Resistors, Capacitors: types, specifications. Standard values, marking, colour coding.	3	15%	
	Inductors and Transformers: types, specifications, Principle of working.	2		

II Diodes: Intrinsic and extrinsic semiconductors, PN junction diode, barrier			
potential, V-I characteristics, Effect of temperature. Equivalent circuit of a	3 1 15%		
diode. Piece wise linear model.			
Specification parameters of diodes and numbering.			
Zener diode, Varactor diodes, characteristics, working principle of LED,	2	2	
photo diode, solar cell.	3		
FIRST INTERNAL EXAM			
III Bipolar Junction Transistors: Structure, typical doping, Principle of			
operation, concept of different configurations. Detailed study of input and	2		
output characteristics of common base and common emitter configuration,	3		
current gain, comparison of three configurations.		1.50/	
Concept of load line and operating point. Need for biasing and		15%	
stabilization, voltage divider biasing, Transistor as amplifier, switch, RC	3		
coupled amplifier and frequency response			
Specification parameters of transistors and type numbering	1	-	
IV Junction Field Effect Transistors: Structure, principle of operation,	2		
characteristics, comparison with BJT.	2		
MOSFET: Structure, principle of operation of Enhancement type	2	15%	
MOSFET, Current voltage characteristics, Depletion-type MOSFET.	2		
Principle of operation of Photo transistor, UJT, SCR.	3		
SECOND INTERNAL EXAM			
V Diode circuits and power supplies: Series and parallel diode circuits,	3		
Clippers, Clampers, Voltage multipliers	C		
Half-wave and full wave (including bridge) rectifiers, Derivation of $V_{\rm rms}$,		20%	
v_{dc} , hpple factor, peak inverse voltage, rectification efficiency in each case, capacitor filter, working and design of a simple zener voltage	4	2070	
regulator.	-		
Block diagram description of a DC Power supply, Principle of SMPS			
VI Electronic Measurements and measuring Instruments.	2		
Generalized performance parameters of instruments: error, accuracy,		-	
sensitivity, precision and resolution.		2 004	
Principle and block diagram of analog and digital multimeter, Block	4	20%	
diagram of CRO, Measurements using CRO, Lissajous patterns, Principle			
and block diagram of DSO, function generator.	1	-	
FND SEMESTED FYAM	1	<u> </u>	

Course No.	Course Name	L-T-P-Credits	Year of Introduction			
BE101 05	INTRODUCTION TO COMPUTING	2103	2015			
BE101-03	AND PROBLEM SOLVING	2-1-0-3	2015			
Course Objectives						
1. To learn	basics of digital computers					
2. To develop problem solving skills						
3. To learn	programming and to solve problems using comp	puters				
Syllabus						
Introduction	to digital computer, Introduction to programming	ng languages, Ope	rating systems, Problem			
Solving strate	egies, Examples for algorithms and flow chan	rts, Introduction	to Python language,			
functions, pa	rameters and arguments, Boolean Expressions,	logical operators	and control statements			
Strings, lists	, tuples and dictionaries, operations, Files,	introduction to	objects, attributes and			
instances						
Expected ou	tcome					
1. Ability to	o design algorithmic solution to problems.					
2. Ability to	o convert algorithms to Python programs.					
3. Ability to	o design modular Python programs using functi	ons				
4. Ability t	o design programs with Interactive Input and	l Output, utilizing	g arithmetic expression			
repetition	ns, decision making, arrays.					
5. Ability to	b design programs using file Input and Output.					
6. Ability to	o develop recursive solutions.					
Text Books :						
• Down 2015	ney, A. et al., How to think like a Computer Scie	entist: Learning wi	th Python, John Wiley,			
• Goel,	A., Computer Fundamentals, Pearson Education	on				
• Lamb	ert K. A., Fundamentals of Python - First Progra	ams, Cengage Lea	rning India, 2015			
• Rajara	aman, V., Computer Basics and C Programming	g, Prentice-Hall In	dia			
References H	Books:					
• Barry	, P., Head First Python, , O' Reilly Publishers					
• Drom	y, R. G., How to solve it by Computer, Pearson	India				
• Guzd	ial, M. J., Introduction to Computing and Progr	amming in Pythor	n, Pearson India			
• Perko	vic, L., Introduction to Computing Using Pytho	n, 2/e, John Wiley	, 2015			
• Spran	kle. M., Problem Solving & Programming Cor	ncepts. Pearson Ir	ndia			
• Venit	. S. and Drake, E., Prelude to Programming' Co	ncepts & Design	Pearson India			
• Zelle	I. Python Programming: An Introduction to Co	omputer Science	Franklin Beedle &			
Assoc	Associates Inc.					

Web lin	ıks:		
•	https://archive.org/details/MIT6.00SCS11		
•	https://www.coursera.org/course/pythonlearn		
	Course Plan		G
Module	Contents	Hours	Sem. Exam Marks
Ι	 Introduction to digital computer – Von Neumann concept – A simple model of computer, acquisition of data, storage of data, processing of data, output of processed data. Details of functional units of a computer. Storage – primary storage and secondary storage. (<i>The discussion should focus more on the functionalities of the units and their interaction than on specific hardware details. However, concepts like memory cells and their addressability (need not be binary), registers, interconnections (buses) have to introduced at an abstract level. For storage devices – primary and secondary –, various categories have to be introduced along with their distinguishing features. For I-O devices also, various categories are to be introduced. The Von Neumann concept should be effectively introduced. History computers need not be taught. However, students have to be encouraged to read the relevant sections of the text book. Chapters 1 – 4 of 'Goel' may be used to support teaching -learning.)</i> Introduction to programming languages:- types of programming languages - high level language , assembly language and machine language, System software - Operating systems – objectives of operating systems, compiler, assembler and interpreter. (For all the above topics, focus should be more on the concepts, significance and objectives. Chapter 6 and 7 (up to 7.4) of 'Goel' may be used to support teaching language. 	8	15%
II	Problem Solving strategies – Problem analysis – formal definition of problem – Solution – top- down design – breaking a problem into sub problems- overview of the solution to the sub problems by writing step by step procedure (algorithm) - representation of procedure by flowchart -		
	 Implementation of algorithms – use of procedures to achieve modularity. (For this part the instructor has to initially use suitable analogies of real world problems to explain the concepts, before delving into computer-solvable problems.) Examples for algorithms and flow charts - at least 10 problems (starting 	8	15%

	with non-numerical examples, and numeric problems like factorial, largest		
	among three numbers, largest among N, Fibonacci etc.; to be introduced		
	with progressive levels of difficulty) must be discussed in detail. (Class		
	assignments and/or tutorials may be used to strengthen understanding of		
	this part. Chapters 4 and 5 of the 'Rajaraman' may be used for the		
	teaching-learning process.)		
	FIRST INTERNAL EXAM		
III	Introduction to Python – variables, expressions and statements,		
	evaluation of expressions, precedence, string operations		
	(Note:- the instructor can demonstrate simple programs to the students		
	and encourage them to develop similar ones. In particular, before		
	attempting programs containing functions, the students should be given		
	enough support and time to develop python code containing long sequence		
	of statements for the simple flowcharts developed earlier. This will		
	strengthen the students' understanding of instruction sequencing. Chapters		
	1 and 2 of 'Downey' have to be covered. Chapter 1 & 2 of 'Lambert' can	8	15%
	also be used.) Control statements, Boolean expressions and logical		
	operators, conditional and alternative executions (Note: - Chapter 4 of		
	'Downey' up to Section 4.9 has to be covered. The instructor should		
	demonstrate each of these concepts with real examples and encourage		
	students to develop as many as possible. Chapter 3 of 'Lambert' can be		
	used for detailed discussion and self-study) Iteration - while statement and		
	tables. (Note: - Chapter 6 of 'Downey' has to be covered. Chapter 3 of		
	'Lambert' can be used for detailed discussion and self-study.)		
IV	Functions, calling functions, type conversion and coercion, composition of		
	functions, mathematical functions, user-defined functions, parameters and		
	arguments.		
	(Note: - Chapter 3 of 'Downey' has to be covered. The instructor should	6	15%
	demonstrate each aspect of the function with real examples and encourage		
	students to develop their own. Chapter 6 (up to 6.3) of 'Lambert' can be		
	used for detailed discussion and self-study.)		
	SECOND INTERNAL EXAM		
V	Strings and lists – string traversal and comparison with examples.		
	(Note: - Chapter 7 of 'Downey' has to be covered. Section 4.1 of 'Lambert'		
	can be used for detailed discussion and self-study.) List operations with	6	20%
	examples (Note: - Chapter 8 of 'Downey' up to Section 8.6 has to be	Ŭ	2070
	covered. Section 5.1 of 'Lambert' can be used for detailed discussion and		
	self-study.); tuples and dictionaries - operations and examples (Note: -		

	Chapters 9 & 10 of the third text have to be covered. Section 5.4 of		
	'Lambert' can be used for detailed discussion and self-study.)		
VI	Files and exceptions - text files, directories		
	(Note: - Chapter 11 of 'Downey' has to be covered)	6 200	200/
	Introduction to classes and objects - attributes, instances	6 20%	
	(Note: - Chapter 12 of 'Downey' up to Section 12.6 has to be covered)		
END SEMESTER EXAM			

Course	No. Course Name L	L-T-P-Credits	Year	of Introd	uction
BE101-	06 INTRODUCTION TO CHEMICAL ENGINEERING	2-1-0-3		2015	
Course	Dbjectives				
1. To	instil in students the interest, excitement, and urg	ge to learn the	e subje	ect of Ch	emical
Engineer	ing				
2. To i	ntroduce the profession of Chemical Engineering				
3. To i	ntroduce the purpose of learning important subjects in	Chemical Engi	neering	g for meet	ing the
requirem	ent of various professional fields in Chemical Engineer	ering.			
Syllabus					
Introduc	ion to Chemical Engineering, profession, plant ope	eration, Basic	concep	ots of uni	its and
equation	s of state, Overview of unit operations and processe	ses, Modes of	heat tra	ansfer, ch	emical
reactions	, DCDA process, basic concepts of P&I diagram. Intro	oduction to proc	ess inst	rumentati	ion and
control,	Introduction to safety in chemical process indust	stries, introduct	tion to	Environ	mental
Engineer	ing, Challenges of Chemical Engineer, Introduc	ction to novel	mate	rials and	l their
develop	nent.				
Expecte	loutcome				
The stud	ent will demonstrate the ability to understand the basic	concepts of Ch	emical	Engineer	ing
Referen	ces Books:				
• E	adger and Banchero, Introduction to Chemical Enginee	ering, McGraw	Hill		
• N	IcCabe, W. L., Smith, J.C. and Harriott, P., Unit Opera	ations in Chemic	cal Eng	ineering,	
N	IcGraw Hill				
• F	ushpavanam, S., Introduction to Chemical Engineering	g, PHI Learning	Pvt. Lt	td.	
• \$	mith, R., Chemical Process Design and Integration, Wi	iley			
	Course Plan				
Module	Contents			Hours	Sem.
					Exam Marks
Ι	Introduction to Chemical Engineering: history of Ch	hemical Engine	ering.		IVIUI INS
	role of Chemical Engineering– a broad overview; ch	hemical industr	ies in		
	India: introduction to Chemical Engineering profess	sion; introducti	on to	6	15%
	chemical plant operation; process development and pro	ocess design.			
II	Basic concepts: units and dimensions, systems of un	inits, conversion	n and		
	conversion factors of units, concept of mole, weight pe	ercent, mole pe	rcent,		150/
	normality, molarity, molality, vapor pressure, partial	pressure, conce	ept of	/	15%
	ideal gas and equations of state.				
	FIRST INTERNAL EXA	M	l		
III	Overview of unit operations such as distillation, evap	poration, absor	ption,	8	15%

	adsorption, extraction, crystallization, drying, leaching, size separation and		
	size reduction. Overview of unit processes like saponification,		
	polymerization, biodiesel formation and hydrogenation.		
IV	Modes of heat transfer-principles of conduction, convection and radiation,		
	heat exchangers. Fluid flow- laminar and turbulent flow. Introduction to		
	transportation of fluids.	0	1.50/
	Classification of chemical reactions, order of reaction, rate equation,	8	15%
	Arrhenius equation, conversion and yield, batch reactor, mixed reactor and		
	plug flow reactor.		
	SECOND INTERNAL EXAM		I
V	Block diagram, process flow diagram for DCDA process for Sulphuric		
	acid manufacture, basic concepts of P&I diagram. Introduction to process		
	instrumentation and control: common methodologies of measurements,	7	2004
	measuring instruments: thermocouple, venturimeter, U-tube manometer,	20%	
	elements of feedback control loop, introduction to control of a distillation		
	column.		
VI	Introduction to safety in chemical process industries – basic concepts, Case		
	study: Bhopal gas tragedy. Introduction to Environmental Engineering -		
	basic concepts, Typical wastewater, air and solid waste management		
	system.Case study: Effect of Aerial Spraying of Endosulfan on Residents	6	20%
	of Kasargod, Kerala. Challenges of Chemical Engineer -need for		
	sustainable alternatives for processes; products with environment friendly		
	life-cycle. Introduction to novel materials and their development.		
END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction
BE103	INTRODUCTION TO SUSTAINABLE ENGINEERING	2-0-1-3	2015
Course Obje	ectives		L
• To ha	ve an increased awareness among students on is	sues in areas of su	ıstainability
• To un	derstand the role of engineering and technology	within sustainabl	e development;
• To k	now the methods, tools, and incentives f	for sustainable p	product-service system
devel	opment	-	
• To es	tablish a clear understanding of the role and imp	pact of various asp	bects of engineering and
engin	eering decisions on environmental, societal, and	economic proble	ms.
Syllabus			
Sustainability	- need and concept, challenges, Environment	acts and protocols	s, Global, Regional and
Local enviror	nmental issues, Natural resources and their pollu	tion, Carbon cred	its, Zero waste concept
ISO 14000,	Life Cycle Analysis, Environmental Impact	Assessment studio	es, Sustainable habitat,
Green buildi	ngs, green materials, Energy, Conventional a	nd renewable so	urces, Technology and
sustainable d	evelopment, Sustainable urbanization, Industria	l Ecology.	
Expected ou	tcome		
The student v	vill be		
• Able	to understand the different types of enviro	onmental pollutio	on problems and their
sustai	nable solutions	-	•
• Able	to work in the area of sustainability for research	and education	
• Havir	ng a broader perspective in thinking for sustaina	ble practices by u	tilizing the engineering
know	ledge and principles gained from this course	1 5	0 0 0
Reference B	ooks:		
• Allen, D	D. T. and Shonnard, D. R., Sustainability Er	ngineering: Conco	epts, Design and Case
Studie	s, Prentice Hall.	0 0	
• Bradley.	A.S; Adebayo, A.O., Maria, P. Engineering	applications in	sustainable design and
develo	pment, Cengage learning	11	U
 Environi 	nent Impact Assessment Guidelines, Notificatio	n of Government	of India, 2006
 Mackent 	hun, K.M., Basic Concepts in Environmental M	Aanagement, Lew	is Publication. London.
1998		<i>U</i> ,	, ,
• ECBC (Code 2007. Bureau of Energy Efficiency. No	ew Delhi Bureau	of Energy Efficiency
Public	ations-Rating System, TERI Publications - GRI	HA Rating System	n
•Ni bin	Chang, Systems Analysis for Sustainable 1	Engineering: The	ory and Applications.
McGra	aw-Hill Professional.	8 8	j i i i i i i i i i i i i i i i i i i i
• Twidell.	J. W. and Weir, A. D., Renewable Energy Re	sources, English l	Language Book Society
(ELBS	5).	, <u>o</u>	
	·		
	30		

• Purohit, S. S., Green Technology - An approach for sustainable environment, Agrobios					
р	publication				
	Course Plan				
Module	Contents	Hours	Sem. Exam Marks		
Ι	Sustainability - Introduction, Need and concept of sustainability, Social- environmental and economic sustainability concepts. Sustainable development, Nexus between Technology and Sustainable development, Challenges for Sustainable Development. Multilateral environmental agreements and Protocols - Clean Development Mechanism (CDM), Environmental legislations in India - Water Act, Air Act.	L4	15%		
	Students may be assigned to do at least one project eg:a) Identifying/assessment of sustainability in your neighbourhood in education, housing, water resources, energy resources, food supplies, land use, environmental protection etc.b) Identify the threats for sustainability in any selected area and explore solutions for the same	P1			
Π	Air Pollution, Effects of Air Pollution; Water pollution- sources, Sustainable wastewater treatment, Solid waste - sources, impacts of solid waste, Zero waste concept, 3 R concept. Global environmental issues- Resource degradation, Climate change, Global warming, Ozone layer depletion, Regional and Local Environmental Issues. Carbon credits and carbon trading, carbon foot print.	L6	15%		
	 Students may be assigned to do at least one project for eg: a) Assessing the pollution status of a small area b) Programmes for enhancing public environmental awareness c) Observe a pond nearby and think about the different measures that can be adopted for its conservation 	Р3			
	FIRST INTERNAL EXAM		-		
III	Environmental management standards, ISO 14000 series, Life Cycle Analysis (LCA) - Scope and Goal, Bio-mimicking, Environment Impact Assessment (EIA) - Procedures of EIA in India.	L4			
	Students may be assigned to do at least one project eg:a) Conducting LCA of products (eg. Aluminium cans, PVC bottles, cars etc. or activities (Comparison of land filling and open burning)b) Conducting an EIA study of a small project (eg. Construction of a building)	Р2	15%		

IV	 Basic concepts of sustainable habitat, Green buildings, green materials for building construction, material selection for sustainable design, green building certification, Methods for increasing energy efficiency of buildings. Sustainable cities, Sustainable transport. Students may be assigned to do at least one project eg: a) Consider the design aspects of a sustainable building for your campus 	L5	— 15%	
	b) Explore the different methods that can be adopted for maintaining a sustainable transport system in your city.			
-	SECOND INTERNAL EXAM		•	
V	Energy sources: Basic concepts-Conventional and non-conventional, solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans, Geothermal energy.	L5		
	Students may be assigned to do at least one project eg:a) Find out the energy savings that can be achieved by the installation of a solar water heaterb) Conduct a feasibility study for the installation of wind mills in Kerala	P2	20%	
VI	Green Engineering, Sustainable Urbanisation, industrialisation and poverty reduction; Social and technological change, Industrial Processes: Material selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis.	L5		
	Students may be assigned to do a group project eg: a) Collect details for instances of climate change in your locality b) Find out the carbon credits you can gain by using a sustainable transport system (travelling in a cycle or car pooling from college to home) c) Have a debate on the topics like: Industrial Ecology is a Boon or Bane for Industries?/Are we scaring the people on Climate Change unnecessarily?/Technology enables Development sustainable or the root cause of unsustainability?	Р3	20%	
	END SEMESTER EXAM			

Course No.	Course Name	L-T-P-Credits	Year of Introduction	
CE100	BASICS OF CIVIL ENGINEERING	2-1-0-3	2015	
Course Objectives				
1. To incu	lcate the essentials of Civil Engineering field	eld to the studer	nts of all branches of	
Engineer	ring.			

2. To provide the students an illustration of the significance of the Civil Engineering Profession in satisfying societal needs.

Syllabus

General introduction to Civil Engineering - Introduction to types of buildings, Components of a residential building, Introduction to industrial buildings; Introduction to planning of residential buildings - Simple building plans; Introduction to the various building area terms; Setting out of a building; Surveying – Principles, Objectives, Horizontal measurements with tapes, Ranging; Levelling – Instruments, Reduction of levels; Modern surveying instruments; Building materials – Bricks, cement blocks, Cement, Cement mortar, Steel; Building construction – Foundations, Brick masonry, Roofs, Floors, Decorative finishes, Plastering, Paints and Painting; Basic infrastructure and services – Elevators, Escalators, Ramps, Air conditioning, Sound proofing, Towers, Chimneys, Water Tanks; Intelligent buildings.

Expected outcome

- 1. The students will be able to illustrate the fundamental aspects of Civil Engineering.
- 2. The students will be able to plan and set out a building.
- 3. Students will be able to explain the concepts of surveying for making horizontal and vertical measurements.
- 4. They will able to illustrate the uses of various building materials and explain the method of construction of different components of a building.
- 5. Students will be able to discuss about various services in a building.

- Chudley, R., Construction Technology, Vol. I to IV, Longman Group, England
- Chudley, R. and Greeno, R., Building Construction Handbook, Addison Wesley, Longman Group, England
- Gopi, S., Basic Civil Engineering, Pearson Publishers
- Kandya, A. A., Elements of Civil Engineering, Charotar Publishing house
- Mamlouk, M. S., and Zaniewski, J. P., Materials for Civil and Construction Engineering, Pearson Publishers

- McKay, W. B. and McKay, J. K., Building Construction Volumes 1 to 4, Pearson India Education Services
- Minu, S., Basic Civil Engineering, Karunya Publications
- Rangwala, S. C., Essentials of Civil Engineering, Charotar Publishing House
- Rangwala, S. C. and Dalal, K. B., Engineering Materials, Charotar Publishing house
- Rangwala, S. C. and Dalal, K. B., Building Construction, Charotar Publishing house

Course Plan				
Module	Contents	Hours	Sem. Exam Marks	
Ι	General Introduction to Civil Engineering - Various disciplines of Civil engineering, Relevance of Civil engineering in the overall infrastructural development of the country.	2		
	Introduction to types of buildings as per NBC; Selection of site for buildings.	2		
	Components of a residential building and their functions. Introduction to industrial buildings – office / factory / software development office / power house /electronic equipment service centre (any one related to the branch of study)	2	15%	
	Students have to visit one such building and submit an assignment about the features of any one of the listed building related to their branch (Not included for exam).	1		
II	Building planning - Introduction to planning of residential buildings- Site plan, Orientation of a building, Open space requirements, Position of doors and windows, Size of rooms; Preparation of a scaled sketch of the plan of a single storeyed residential building in a given site plan.	4	15%	
	Introduction to the various building area terms - Computation of plinth area / built up area, Floor area / carpet area - for a simple single storeyed building; Setting out of a building.	3		
	FIRST INTERNAL EXAM			
III	Surveying - Principles and objectives of surveying;	1		
	Horizontal measurements – instruments used – tape, types of tapes; Ranging (direct ranging only) – instruments used for ranging.	3		
	Levelling - Definitions, principles, Instruments (brief discussion only) - Level field book - Reduction of levels - problems on levelling (height of collimation only).	3	15%	
	Modern surveying instruments – Electronic distance meter, digital level, total station, GPS (Brief discussion only).	1		
IV	Building materials - Bricks, cement blocks - Properties and specifications.	2	15%	

	Cement - OPC, properties, grades; other types of cement and its uses (in	1	
	brief).	1	
	Cement mortar – constituents, preparation.	1	
	Concrete – PCC and RCC – grades.	1	
	Steel - Use of steel in building construction, types and market forms.	1	
	SECOND INTERNAL EXAM		
V	Building construction - Foundations; Bearing capacity of soil (definition	2	
	only); Functions of foundations, Types - shallow and deep (sketches only).	Z	
	Brick masonry – header and stretcher bond, English bonds – Elevation and	2	
	plan (one brick thick walls only).	Z	
	Roofs – functions, types, roofing materials (brief discussion only).	1	20%
	Floors – functions, types; flooring materials (brief discussion only).	1	
	Decorative finishes – Plastering – Purpose, procedure.	1	
	Paints and Painting – Purpose, types, preparation of surfaces for painting	2	
	(brief discussion only).	2	
VI	Basic infrastructure and services - Elevators, escalators, ramps, air	2	
	conditioning, sound proofing (Civil engineering aspects only)	Z	2004
	Towers, Chimneys, Water tanks (brief discussion only).	1	20%
	Concept of intelligent buildings.	2	
	END SEMESTER EXAM		

Course	No. Course Name	L-T-P-Credits	Year	of Intr	oduction	
ME10	00 BASICS OF MECHANICAL ENGINEERING	2-1-0-3		2015	5	
Course Objectives						
To expo	ose the students to the thrust areas in Mechanical Er	gineering and their	releva	nce by c	overing	
the fund	lamental concepts.					
Syllabu	S					
Thermo	dynamics, laws of thermodynamics, implications,	cycles, energy cor	iversio	n devic	es, steam	
and wat	er machines, engines, turbo machines, refrigeratio	n and air conditioni	ng, po	wer trai	smission	
devices	in automobiles, latest trends, engineering materi	als and manufactur	ing pro	ocesses,	types of	
material	s, alloys, shape forming methods, machine tools.					
Expecte	ed outcome					
The stuc	dent will be able to understand the inter dependence	of the thrust areas	in Mec	chanical		
Enginee	pring and their significance leading to the developm	ent of products, pro	cesses	and sys	tems.	
Referen	aces Books:					
•	• Balachandran, Basic Mechanical Engineering, C	Owl Books				
•	• Benjamin, J., Basic Mechanical Engineering, Pe	entex Books				
•	• Clifford, M., Simmons, K. and Shipway, P., A	n Introduction to N	Aechar	nical En	gineering	
	Part I - CRC Press					
•	Crouse, Automobile Engineering, Tata Mc-Grav	v-Hill, New Delhi				
•	• Gill, Smith and Zuirys, Fundamentals of IC Eng	gines, Oxford and II	3H puł	olishing	company	
	Pvt. Ltd. New Delhi. Crouse, Automobile Engin	eering, Tata Mc-Gr	aw-Hi	ll, New	Delhi.	
•	• Nag, P. K., Basic and Applied Thermodynamics	, Tata McGraw-Hil	1			
•	• Pravin Kumar, Basic Mechanical Engineering					
•	• Roy and Choudhary, Elements of Mechanical E	ngineering, Media	Promo	ters & F	ublishers	
	Pvt. Ltd., Mumbai.					
•	• Sawhney, G. S., Fundamentals of Mechanical E	ngineering, PHI				
	Course Plan					
					Sem.	
Module	Contents			Hours	Exam	
Т	Thermodynamics: Laws of Thermodynamic	s significance	and		Marks	
L	applications of laws of thermodynamics: en	rony available en	erov			
	Clausius inequality: principle of increase of en	ropy, available en	l gas	7	15%	
	equations: Analysis of Carnot cycle Otto cycle	Diesel cycle and Rr	avton	/	15/0	
	cycle: Efficiency of these cycles	steper cycle and Di	uy 1011			
П	Energy conversion devices Roilers Steam tur	vines Gas turbines	and			
	Hydraulic turbines: Working principle of two st	oke and four stroke	e I.C.	7	15%	

7	15%
7	15%
/	
·	
7	2004
/	20%
7	2004
	2070
<u>.</u>	
	7 7 7 7 7 7 7

Course	No. Course Name	L-T-P-Credits	Year o	of Introd	luction
EE10) BASICS OF ELECTRICAL ENGINEERING	2-1-0-3		2015	
Course	Objectives	·			
To impa	urt a basic knowledge in Electrical Engineering	g with an underst	anding o	of funda	mental
concepts					
Syllabus		_	_		
Element	ary concepts of electric circuits, Kirchhoff's law	vs, constant voltag	ge and c	urrent s	ources,
Matrix	representation; Magnetic circuits, energy stored	in magnetic circ	cuits, E	Electrom	agnetic
induction	n, Alternating current fundamentals; AC Circu	its, Phasor repres	entation	of alte	rnating
quantitie	s- rectangular, polar and exponential forms; Inree	phase systems, sta	ar and de	elta conn	ection;
Generati	on of power, Power transmission and distribution	; Transformers, F	siectric r	viacnines	s- D.C.
Fypooto	d outcome				
The cou	rse will enable the students to gain preliminary l	nowledge in basic	r concen	ts of Fl	ectrical
Engineer	ing	diowiedge in basic	concep		centear
Referen	ces Books				
•	Bhattacharva S K Basic Electrical & Electron	ics Engineering Pe	earson		
•	Bird L. Electrical Circuit Theory and Technolog	v. Routledge, Tav	lor & Fra	ancis Gro	ดแต
•	Del Toro V Electrical Engineering Fundament	als Prentice Hall o	f India		μp
	Havt W H, Kemmerly J E, and Durbin S M	Engineering Circ	uit Anal	vsis. Tat	а
	McGraw Hill	, Engineering ene	une i intar	<i>j</i> 515, 1 <i>a</i>	u
•	Hughes, Electrical and Electronic Technology, I	Pearson Education			
•	Mehta, V. K. and Mehta, R., Basic Electrical En	gineering, S. Chan	d Publisł	ning	
•	Parker and Smith, Problems in Electrical Engine	ering, CBS Publish	ners and	Distribut	tors
•	Sudhakar and Syam Mohan, Circuits and Netwo	rks Analysis and S	ynthesis,	Tata Mo	cGraw
	Hill	-	-		
•	Suresh Kumar, K. S, Electric Circuits and Netwo	orks, Pearson Educ	ation		
	Course Plan				
					Sem.
Module	Contents			Hours	Exam
T	Elementary concepts of electric circuits: Kirchho	f's laws constant	voltage		тиагкя
	and current sources formation of network equat	ions by node volt	ige and		
	mesh current methods.				
	Matrix representation - solution of network equa	tions by matrix m	ethods.	6	15%
	star-delta conversion (Analysis of resistive ne	tworks only). Nu	merical		
	problems.	57			
	problems.				

II	Magnetic circuits: MMF, field strength, flux density, reluctance, energy		
	stored in magnetic circuits.		
	Electromagnetic induction: Faraday's laws, Lenz's law-statically induced		
	and dynamically Induced emfs- self-inductance and mutual inductance,	0	1.50/
	coefficient of coupling.	9	15%
	Alternating current fundamentals: Generation of alternating voltages,		
	waveforms frequency, period, average and RMS values and form factor.		
	Numerical problems.		
	FIRST INTERNAL EXAM		
III	AC Circuits: Phasor representation of alternating quantities- rectangular,		
	polar and exponential forms. Analysis of simple ac circuits - concept of		
	impedance. Power and power factor in ac circuits- active, reactive and		
	apparent power. Solution of RL, RC and RLC circuits.		
	Three phase systems: Generation of three phase voltages- advantages of	9	15%
	three phase systems, star and delta connection, three wire and four wire		
	systems, relation between line and phase voltages, line and phase currents.		
	Three phase power measurement by two wattmeter method. Numerical		
	problems.		
IV	Generation of power: Block schematic representation of generating stations-		
	hydroelectric, thermal and nuclear power plants. Renewable energy sources.		
	Power transmission and distribution: Typical electrical power transmission	5	15%
	scheme, need for high voltage transmission, substation equipments, primary		
	and secondary transmission and distribution systems.		
	SECOND INTERNAL EXAM		
V	Transformers: construction of single phase and three phase transformers		
	(core type only) – EMF equation, losses and efficiency.		
	Electric Machines: D.C. Machines - Construction, types, principles of	7	20%
	operation of dc motor, applications. AC Motors - Construction, principles of	/	2070
	operation of single phase and three phase induction motor. Principle of		
	operation of Universal motor.		
VI	Tariff: Different types of LT and HT consumers, tariff schemes - uniform		
	tariff and differential tariff.		
	Wiring systems: Basic concepts of wiring (conduit wiring only), service		
	mains, meter board and distribution board. Earthing of installations -	6	20%
	necessity of earthing, plate & pipe earthing, protective fuses, MCB, ELCB.		
	Lamps: Different types of lamps - Incandescent lamps, fluorescent, mercury		
	vapour, sodium vapour, metal halide and LED lamps.		
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P-Credits	Year of Introduction
EC100	BASICS OF ELECTRONICS ENGINEERING	2-1-0-3	2015
a			

- 1. To get basic idea about types, specification and common values of passive components.
- 2. To familiarize the working and characteristics of diodes, transistors, MOSFETS and some measuring instruments.
- 3. To understand working of diodes in circuits and in rectifiers.

Syllabus

Evolution and Impact of Electronics in industries and in society, Familiarization of Resistors, Capacitors, Inductors, Transformers and Electro mechanical components, PN Junction diode: Structure, Principle of operation, Photo diode, LED, Solar cell, Bipolar Junction Transistors: Structure, Principle of operation, characteristics, Rectifiers and power supplies: Half wave and full wave rectifier, capacitor filter, zener voltage regulator, Amplifiers and Oscillators: common emitter amplifier, feedback, oscillators, RC phase shift oscillator, Analogue Integrated circuits: operational amplifier, inverting and non-inverting amplifier, comparator, Electronic Instrumentation: digital multimeter, digital storage oscilloscope, function generator, Radio communication: principle of AM & FM, super heterodyne receiver, Radar system: Principle, block diagram of pulsed radar, Satellite communication: geo-stationary satellite, transponder, Global Positioning System, Mobile communication: cellular communications, cells, GSM, Optical communication: system, principle of light transmission through fiber, Entertainment Electronics: Color television, cable TV, CCTV system, HDTV, LCD & LED displays.

Expected outcome

Student can identify the active and passive electronic components. Student can setup simple circuits using diodes and transistors. Student will get fundamental idea about basic communication systems and entertainment electronics.

- Bell, D. A., Electronic Devices and Circuits, Oxford University Press
- Boylested, R. L. and Nashelsky, L., Electronic Devices and Circuit Theory, Pearson Education
- Frenzel, L. E., Principles of Electronic Communication Systems, Mc Graw Hill
- Kennedy, G. and Davis, B., Electronic Communication Systems, Mc Graw Hill
- Tomasy, W., Advanced Electronic Communication system, PHI Publishers

Course Plan				
Module	Contents	Hours	Sem. Marks	
Ι	Evolution of Electronics, Impact of Electronics in industry and in society.	1	10%	
	Resistors, Capacitors: types, specifications. Standard values, marking,	3	1070	

	colour coding		
		2	
	Inductors and Transformers: types, specifications, Principle of working.	2	
	Electro mechanical components: relays and contactors.	1	
II	PN Junction diode: Intrinsic and extrinsic semiconductors, Principle of		
	operation, V-I characteristics, principle of working of Zener diode, Photo	3	
	diode, LED and Solar cell.		
	Bipolar Junction Transistors: PNP and NPN structures, Principle of		20%
	operation, input and output characteristics of common emitter	4	
	configuration, Typical specifications of low, medium and high power and	4	
	frequency diodes and transistors, packaging.		
	FIRST INTERNAL EXAM		
III	Rectifiers and power supplies: Block diagram description of a dc power		
	supply ,Half wave and full wave (including bridge) rectifier, capacitor	4	
	filter, working of simple zener voltage regulator, Principle of SMPS		
	Amplifiers and Oscillators: Circuit diagram and working of common		15%
	emitter amplifier, Block diagram of Public Address system, concepts of	2	
	feedback, working principles of oscillators, circuit diagram & working of	3	
	RC phase shift oscillator.		
IV	Analogue Integrated circuits: Functional block diagram of operational		
	amplifier, ideal operational amplifier, inverting and non inverting	3	
	amplifier, comparator.		
	Digital ICs: Logic Gates.	1	15%
	Electronic Instrumentation: Principle and block diagram of digital		
	multimeter, principle of digital storage oscilloscope, principle and block	3	
	diagram of function generator.		
	SECOND INTERNAL EXAM		
V	Radio communication: principle of AM & FM, frequency bands used for		
	various communication systems, block diagram of super heterodyne	3	
	receiver.		20%
	Radar system: Principle, block diagram of pulsed radar.	1	2070
	Satellite communication: concept of geo-stationary satellite, satellite	3	
VI	Mobile communication: basic principles of cellular communications		
VI	concepts of cells, frequency reuse, principle and block diagram of GSM.	2	
	Optical communication: block diagram of the optical communication		
	system, principle of light transmission through fiber, advantages of optical	2	20%
	communication systems.		
	Entertainment and Security Electronics Technology: Basic principles of	3	
	cable 1 V, CC1 V, D1H system, HD1 V, Plasma, LCD, LED 1 V. END SEMESTED EVAM		
	END SEIVLESTER EAAIVI		

Course	No.	Course Name	L-T-P-Credits	Year	of Intr	oduction
MA1	02	DIFFERENTIAL EQUATIONS	3-1-0-4		2015	5
Course	Obje	ctives				
This co	ourse i	introduces basic ideas of differential equations	s, both ordinary	and p	artial, v	which are
widely	used	in the modeling and analysis of a wide rang	ge of physical pl	henom	ena and	l has got
applicat	tions a	across all branches of engineering. The course	also introduces	Fourie	r series	which is
used by	engin	eers to represent and analyze periodic functions	in terms of their	freque	ncy con	ponents.
Syllabu	IS					
Homog	eneou	s linear ordinary differential equations, non-ho	omogeneous line	ar ord	inary di	fferential
equation	ns, nu	merical solutions of ordinary differential equa	tions, Fourier se	ries, p	artial di	fferential
equation	ns, apj	plications of partial differential equations.				
Expect	ed out	tcome				
At the	end of	f the course students will have acquired basic l	knowledge of dif	fferenti	ial equa	tions and
method	s of s	olving them and their use in analyzing typical	l mechanical or	electri	cal syste	ems. The
include	d set	of assignments will familiarize the students	with the use of	softwa	are pacl	cages for
analyzii	ng sys	tems modeled by differential equations.				
Text Bo	ooks:					
•	Kreys	zig, E., Advanced Engineering Mathematics, Wi	iley			
•	Srivas	tava, A. C. and Srivasthava, P. K., Engineering	Mathematics, V	ol 2. P	HI Lear	ning Pvt.
	Ltd.					
Referen	nces B	ooks:				
•	Bali, I	N. P. and Goyal, M., Engineering Mathematics, I	Lakshmy Publica	tions		
•	Datta,	Mathematical Methods for Science and Enginee	ering. Cengage L	earning	5	
•	Edwai	rds, C. H. and Penney, D. E., Differential Equ	uations and Bou	ndary	Value I	Problems.
	Comp	uting and Modelling, Pearson.				
•	Grewa	al, B. S., Higher Engineering Mathematics, Khar	nna Publishers, N	ew De	lhi.	
•	Jordar	n, D. W. and Smith, P., Mathematical Technique	s, Oxford Univer	sity Pr	ess	
•	Pal, S	and Bhunia, S. C., Engineering Mathematics, O	xford, 2015			
•	Ross,	S. L., Differential Equations, Wiley				
		Course Plan				
						Sem.
Module		Contents			Hours	Exam Marks
Ι	HON	MOGENEOUS LINEAR DIFFERENTIAL EOU	JATIONS			
	(Tex	t Book 1: Sections: 1.7, 2.1, 2.2, 2.4, 2.6, 3.1, 3.2)			
	Exis	tence and Uniqueness theorem for solutions of	initial value prob	olems	5	15%
	(with	nout proof). Basic theory of solutions of hom	nogeneous differ	ential		

equations (superposition principle, basis of solutions, general and

	particular solutions).		
	Methods of solving homogeneous linear differential equations with		
	constant coefficients of orders two or nigner. Modelling of free		
	oscillations of a mass-spring system.	4	
	(For practice and submission as assignment only:		
	Solutions of separable, exact and first order linear differential equations		
	and orthogonal trajectories)		
II	NON-HOMOGENEOUS LINEAR ORDINARY DIFFERENTIAL		
	EQUATIONS		
	(Text Book 1: Sections: 2.7–2.10, 3.3)	4	
	Basic theory of non-homogeneous linear differential equations. Methods	•	
	of solving non-homogeneous linear differential equations with constant		
	coefficients		
	Method of undetermined coefficients and method of variation of	Δ	
	parameters.		15%
	Legendre and Cauchy's differential equations.		
	Modelling of forced oscillations of mass-spring system and electric		
	circuits.		
		2	
	(For practice and submission as assignment only:		
	Sketching, plotting and interpretation of solutions of differential equations		
	using suitable software packages)		
	FIRST INTERNAL EXAM		
III	NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS		
	(Text Book 1: sections 21.1, 21.2)		
		6	
	Basic idea of numerical solutions of differential equations. Euler-method,	-	
	improved Euler method, Runge-kutta method of fourth order (without		
	proof)		150/
	Predictor-corrector method of Adams-Moulton (without proof). Error		15%
	bounds of these methods.		
		2	
	(For practice and submission as assignment only:		
	Implementation of the above numerical methods in any programming		
	language or using software packages)		

IV	FOURIER SERIES		
	(Text Book 1: Sections: 11.1-11.2)		
	Periodic Functions- Orthogonality of Sine and Cosine functions-Fourier	3	
	series of periodic functions, Euler's formula, Condition for Convergence		
	of Fourier series (without proof)		150/
	Fourier series for even and odd functions, Half range expansion		15%
	(For practice and submission as assignment only:	6	
	Plots of partial sums of Fourier series and demonstration of convergence		
	using plotting software)		
	SECOND INTERNAL EXAM		
V	PARTIAL DIFFERENTIAL EQUATION		
	(Text Book 2: Section: 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5, 5.1.9, 5.1.10, 5.2.6,	-	
	5.2.7, 5.2.8, 5.2.9, 5.2.10)	5	
	Formation of PDEs, solutions of first order PDEs,		20%
	General integral, complete integral, Lagrange's linear equation,		
	Higher order PDE-Solution of Linear Homogeneous PDE with Constant Coefficients.	5	
VI	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS (Text Book 2: Section: 6.1, 6.2, 6.3, 6.4, 6.7, 6. 8, 6. 9, 6.9.1, 6.9.2) Method of Separation of Variables	2	
	Modelling Vibrations of a Stretched sting-One dimensional wave equation and its Solution by Fourier series.	4	
	Heat transfer through an insulated rod-one dimensional heat equation. Solution of heat equation by Fourier series in special cases– insulated rod with ends at zero temperatures, insulated rod with ends at non-zero temperatures.	4	20%
	(For practice and submission as assignment only:		
	Plots of partial sums of Fourier series solutions of PDEs and		
	demonstration of convergence using plotting software)		
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P-Credits	Year of Introduction
BE102	DESIGN AND ENGINEERING	2-0-2-3	2015

The purpose of this course is:-

- 1. To excite the student on creative design and its significance;
- 2. To make the student aware of the processes involved in design;
- 3. To make the student understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design;
- 4. To get an exposure as to how to engineer a design.

Syllabus

Design and its objectives; Role of science, engineering and technology in design; Engineering as a business proposition; Creative design and the Design Process; Design evaluation and communication of designs; Design for function and strength; Material selection and design detailing; Role of standards in design Engineering the design; Design for "X"; Product centered and user centered design; Aesthetics and ergonomics; Concepts of value engineering, concurrent engineering and reverse engineering in design; Culture based design; Modular design; Design optimization needs; User interface; Intelligent and autonomous products; Internet of things; Advanced products and human psychology; Life cycle design; Product and its environment; Design as a marketing tool; Products and IPR; Product liability.

Expected outcome

The student will be:-

- 1. Able to appreciate the different elements involved in good designs and to apply them in practice when called for.
- 2. Aware of the product oriented and user oriented aspects that make the design a success.
- 3. Will be capable to think of innovative designs incorporating different segments of knowledge gained in the course;
- 4. Students will have a broader perspective of design covering function, cost, environmental sensitivity, safety and other factors other than engineering analysis.

- Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design [Part 3 Chapters 17 to 27], ISBN-13: 978-0124158917 ISBN-10: 0124158919
- Dym, C. L., Little, P. and Orwin, E. J., Engineering Design A Project based introduction - Wiley, ISBN-978-1-118-32458-5
- Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, XI, 489 p. ISBN 978-94-011-3985-4 Springer
- Haik, Y. And Shahin, M. T., Engineering Design Process, Cengage Learning, ISBN-13: 978-0-495-66816-9
- Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design: A Systematic

Approach, 3rd ed. 2007, XXI, 617p., ISBN 978-1-84628-319-2

• Voland, G., Engineering by Design, ISBN 978-93-325-3505-3, Pearson India

Web pages:

- 1. E-Book (Free download): http://opim.wharton.upenn.edu/~ulrich/designbook.html
- 2. http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/designforx/design_for_x_notes_s ection_5.pdf

Course Plan						
Module	Contents	Hours	Sem. Exam Marks			
Ι	Design and its objectives; Design constraints, Design functions, Design means and Design from; Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. Design form, function and strength;	L2				
	How to initiate creative designs? Initiating the thinking process for designing a product of daily use. Need identification; Problem Statement; Market survey- customer requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing on to the Design needs.	L3	15%			
	An Exercise in the process of design initiation. A simple problem is to be taken up to examine different solutions- Ceiling fan? Group Presentation and discussion.	P4				
Π	Design process- Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Quality function deployment-meeting what the customer wants; Evaluation and choosing of a design.	L2				
	Design Communication; Realization of the concept into a configuration, drawing and model. Concept of "Complex is Simple". Design for function and strength. Design detailing- Material selection, Design visualisation- Solid modelling; Detailed 2D drawings; Tolerancing; Use of standard items in design; Research needs in design; Energy needs of the design, both in its realization and in the applications					
	An exercise in the detailed design of two products (Stapler/door/clock)	P4				
	FIRST INTERNAL EXAM					
III Prototyping- rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis.			15%			
Engineering the design – From prototype to product. Planning; Scheduling; Supply chains; inventory; handling;						

	manufacturing/construction operations: storage:		
	List out the standards organizations		
	Prepare a list of standard items used in any engineering		
	specialization	P4	
	Develop any design with over 50% standard items as		
	parts.		
IV	Design for "X" covering quality reliability safety		
	manufacturing/construction, assembly, maintenance.		
	logistics, handling; disassembly; recycling; re-engineering		
	etc.	L4	
	List out the design requirements(x) for designing a rocket		15%
	shell of 3 meter diameter and 8 meter length.		
	Design mineral water bottles that could be packed	51	
	compactly for transportation.	P4	
	SECOND INTERNAL EXAM		
V	Product centred and user centred design. Product centred		
	attributes and user centred attributes. Bringing the two	L2	
	closer. Example: Smart phone. Aesthetics and ergonomics.		
	Value engineering, Concurrent engineering, Reverse		
	engineering in design; Culture based design; Architectural		
	designs; Motifs and cultural background; Tradition and	т 4	200/
	design;	L4	20%
	of colours in design.		
	Make sharp corners and change them to smooth curves-		
	check the acceptance. Examine the possibility of value	P6	
	addition for an existing product.		
VI	Modular design; Design optimization; Intelligent and		
	autonomous products; User interfaces; communication		
	between products; autonomous products; internet of		
	things; human psychology and the advanced products.	L3	
	Design as a marketing tool; Intellectual Property rights -		20%
	Trade secret; patent; copy-right; trademarks; product		
	liability.		
	Group presentation of any such products covering all	DA	
	aspects that could make or mar it.	ΓU	
END SEMESTER EXAM			

Course No.	Course Name	L-T-P- Credits	Year of Introduction		
PH110	ENGINEERING PHYSICS LAB	0-0-2-1	2015		
Course Objectives					

This course is designed (i) to impart practical knowledge about some of the phenomena they have studied in the Engineering Physics course and (ii) to develop the experimental skills of the students.

List of Exercises / Experiments (Minimum of 8 mandatory)

Basics

- 1. Study of application of Cathode Ray Oscilloscope (CRO) for Frequency and Amplitude measurements. Lissajeous figures (useful for different types of polarized light.)
- 2. Temperature measurement Thermocouple
- 3. Measurement of strain using strain gauge and Wheatstones bridge.

Waves, Oscillations and Ultrasonics

- 4. Wave length and velocity measurement of ultrasonic waves in a liquid using ultrasonic diffractometer.
- 5. The LCR Circuit Forced and damped harmonic oscillations.
- 6. Meldes string apparatus. Measurement of frequency in the transverse and longitudinal mode.

Interference

- 7. Wave length measurement of a monochromatic source of light using Newton's Rings method.
- 8. Determination of refractive index of a liquid using Newton's Rings apparatus.
- 9. Determination of diameter of a thin wire or thickness of a thin strip of paper using air wedge method.

Diffraction

- 10. To determine the slit or pinhole width.
- 11. To measure wavelength using a millimeter scale as a grating.
- 12. Determination the wavelength of He-Ne laser or any standard laser using diffraction grating.
- 13. To determine the wavelength of monochromatic light using grating.
- 14. Determination of dispersive power and resolving power of a plane transmission grating.

Polarisation

- 15. Kerr Effect To demonstrate the Kerr effect in nitrobenzene solution and to measure the light intensity as a function of voltage across the Kerr cell using photo detector.
- 16. To measure the light intensity of plane polarised light as a function of the analyzer position.
- 17. Laurent's Half Shade Polarimeter -To observe the rotation of the plane of polarization of monochromatic light by sugar solution and hence to determine the concentration of solution of optically active substance.

Laser & Photonics

- 18. To determine the speed of light in air using laser.
- 19. Calculate the numerical aperture and study the losses that occur in optical fiber cable.
- 20. Determination of the particle size of lycopodium powder.
- 21. I-V characteristics of solar cell
- 22. To measure Planck's constant using photo electric cell.
- 23. Measurement of wavelength of laser using grating.

Reference Books:

- Avadhanulu, M. N., Dani, A. A. and Pokley, P. M., Experiments in Engineering Physics, S. Chand & Co.
- Gupta, S. K., Engineering Physics Practicals, Krishna Prakashan Pvt. Ltd.
- Koser, A. A., Practical Engineering Physics, Nakoda Publishers and Printers India Ltd
- Rao, B. S. and Krishna, K. V., Engineering Physics Practicals, Laxmi Publications
- Sasikumar, P. R. Practical Physics, PHI.

Website:

• http://www.indosawedu.com

C	CourseCourse NameL-T-P-YearNo.CreditsIntrodu		Year of Introduction				
С	CY 110 ENGINEERING CHEMISTRY LAB 0-0-2-1		2015				
		List of Exercises / Experiments (Minin	num of 8 manda	itory)			
1.	Estimat	ion of Total Hardness – EDTA method.					
2.	Estimat	ion of Iron in Iron ore.					
3.	Estimat	ion of Copper in Brass.					
4.	Estimat	ion of dissolved oxygen by Winklers method					
5.	Estimat	ion of chloride in water.					
6.	Preparat	tion of Urea formaldehyde and Phenol-forma	ldehyde resin.				
7.	Determi	ination of Flash point and Fire point of oil by	Pensky Martin A	pparatus.			
8.	Determi	ination of wavelength of absorption maximur	n and colorimetri	c estimation of Fe ³⁺ in			
	solution	1.					
9.	Determi	ination of molar absorptivity of a compound of	other than Fe^{3+} .				
10.	Analysi	s of IR spectra of any three organic compoun	ds.				
11.	Analysi	s of ¹ H NMR spectra of any three organic con	mpounds.				
12.	Calibrat	tion of pH meter and determination of pH of a	a solution.				
13.	Verifica	ation of Nernst equation for electrochemical c	ell.				
14.	Potentic	ometric titrations: acid – base and redox titrat	ions				
15.	Conduc	tivity measurements of salt solutions.					
16.	Flame p	photometric estimation of Na+ to find out the	salinity in sand.				
Exp	pected ou	ıtcome					
The Che	The student will be able to apply and demonstrate the theoretical concepts of Engineering Chemistry.						
Ref	References:						

• Practical Engineering Chemistry Lab Manual, Owl book publishers

Course No.	Course Name	L-T-P- Credits	Year of Introduction					
CE110	CIVIL ENGINEERING WORKSHOP	0-0-2-1	2015					
	List of Exercises / Experiments (Mini	mum of 8 manda	atory)					
	(For Civil Engineering]	Branch)						
Setting out	of a building: The student should set out a bu	ilding (single roo	om only) as per the					
given buildi	ng plan using tape only.							
Setting out o	of a building: The student should set out a bui	lding (single room	m only) as per the					
given building	ng plan using tape and cross staff.							
Construct a	wall of height 50 cm and wall thickness $1\frac{1}{2}$ b	ricks using Engli	sh bond (No mortar					
required) - c	orner portion – length of side walls 60 cm.							
Construct a	wall of height 50 cm and wall thickness 2 bri	cks using English	h bond (No mortar					
required) - c	orner portion – length of side walls 60 cm.							
Compute the	e area and/or volume of various features of a	building/structure	e such as door and					
window size	e, number of bricks required to construct a wa	ill of a building, c	tameter of bars used					
in windows	etc. – 10 create an awareness of measurement	its and units (use	tape of other simple					
Testing of b	uilding materials: The student should do the	compression test	ing of any three					
construction	materials and compare the strength (brick h	ollow block later	ing of any three					
concrete cub	be stone block and so on)	onow block, later	ne block, cement					
Computation	n of Centre of gravity and Moment of inertia	of a given rolled	steel section by actual					
measuremen	its.							
Introduction	to simple plumbing and sanitary fittings.							
Home assign	nment 1: Preparation of a building model - Th	ne students in bate	ches should prepare					
and submit a	a building model for a given plinth area in a g	iven site plan cor	nstrained by a					
boundary wa	all. The minimum requirements of a resident	ial building viz.,	drawing cum dining					
room, one be	ed room and a kitchen should be included. T	The concept of an	energy efficient					
building sho	uld also be included in the model.							
Home assign	nment 2: Report preparation - The student sho	uld collect the co	nstruction details of					
any one unic	any one unique Civil Engineering structure, prepare and submit a detailed report with neat							
illustrations.	illustrations.							
Home assignment 3: Report preparation - The students should collect samples of building								
materials, pr	materials, prepare and submit a detailed report including their market rates.							
(For braches other than Civil Engineering)								
Setting out of a building: The student should set out a building (single room only) as per the								
given buildin	given building plan using tape only.							
Setting out o	or a building: The student should set out a bui	laing (single rooi	m only) as per the					
51								

given building plan using tape and cross staff.

Building area computation: The student should prepare a rough sketch of a given single storeyed building and by taking linear measurements compute plinth area and carpet area of the given building.

Construct a wall of at least a height of 500mm and wall thickness 1brick using English bond (No mortar required) - corner portion – length of side walls at least 600mm.

Compute the area and/or volume of various features of a building/structure such as door and window size, number of bricks required to construct a wall of a building, diameter of bars used in windows etc. – To create an awareness of measurements and units (use tape or other simple measuring instruments like vernier calipers, screw gauge etc.).

Horizontal measurements: Find the area of an irregular polygon set out on the field.

Vertical measurements: Find the level difference between any two points.

Computation of Centre of gravity and Moment of inertia of a given rolled steel section by sketching and measurements.

Home assignment 1: Preparation of a building model - The students in batches should prepare and submit a building model for a given plinth area in a given site plan constrained by a boundary wall. The minimum requirements of a residential building viz., drawing cum dining room, one bed room and a kitchen should be included. The concept of an energy efficient building should also be included in the model.

Home assignment 2: Report preparation - The student should collect the construction details of an industrial building related to their branch of study, prepare and submit a detailed report with neat illustrations.

Home assignment 3: Report preparation - The students should collect samples of building materials, prepare and submit a detailed report about their market rates.

Co	urse		Course Name	urse Name L-T-P- Year of		ear of
N	lo.			Credits Introduction		oduction
MF	E110	MEC	HANICAL ENGINEERING WORKSHOP	0-0-2-1		2015
Cour	rse Obje	ectives				
Intro	duction	to man	ufacturing processes and applications. Familiariz	zation of vari	ous to	ols,
meas	uring de	evices,	practices and machines used in various worksho	p sections.		
		Li	st of Exercises / Experiments (Minimum of 8	mandatory)		
Sl. No.	Nan Shop	ne of floor	Exercises			No of sessions
1	Genera	al	Studies of mechanical tools, components and th(a) Tools: screw drivers, spanners, Allen keys,And accessories(b) Components: Bearings, seals, O-rings, circle	heir application, cutting plier lips, keys etc.	ons: s etc.	1
2	Carper	ntry	Any one model from the following: 1. T-Lap joint 2. Cross lap joint 3. Dovetail joi	nt 4. Mortise	joint	2
3	Smithy	ý	 (a) Demonstrating the forgability of different of Alloy steel and Cast steel) in cold and hot state (b) Observing the qualitative differences in the materials (c) Determining the shape and dimensional vaspecimen due to forging under different inspection and measurements 	materials (MS es. hardness of ariations of A states by y	S, Al, these I test visual	2
4	Found	ry	Any one exercise from the following 1. Bench moulding 2. Floor moulding 3. Core	making		2
5	Sheet 1	metal	Any one exercise from the following Making 1. Cylindrical 2. Conical 3. Prismatic sheet metal	shaped jobs	from	2
6	Weldir	ng	Any one exercise from the following Making joints using Electric arc welding. H horizontal, vertical and overhead positions	Bead formation	on in	2
7	Fitting Assem	and bly	Filing exercise and any one of the following ex Disassembling and reassembling of 1. Cylind 2. Tail stock assembly 3. Time piece/clock machine.	ercises er piston asse 4. Bicycle of	embly r any	2
8	Machin	nes	Demonstration and applications of Drilling r machine, Shaping machine, Milling machine a	nachine, Grinnd lathe	nding	2

Course	Course Name	L-T-P-	Year of
No.		Credits	Introduction
EE110	ELECTRICAL ENGINEERING WORKSHOP	0-0-2-1	2015

The objective of this course is to familiarize the students with commonly used components, accessories and measuring equipment in Electrical installations. The course also provides hands on experience in setting up of simple wiring circuits.

List of Exercises / Experiments (Minimum of 8 mandatory)

- 1. Identify different types of cables/wires and switches and their uses.
- 2. Identify different types of fuses & fuse carriers, MCB and ELCB, MCCB with ratings and usage.
- 3. Wiring of simple light circuit for controlling light/fan point (PVC conduit wiring).
- 4. Wiring of light/fan circuit using Two way switches (Staircase wiring)
- 5. Wiring of fluorescent lamps and light sockets (6 A)
- 6. Wiring of Power circuit for controlling power device (16A socket)
- 7. Godown wiring / Tunnel wiring
- 8. Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, Main switch and Energy meter.
- 9. Measurement of voltage, current, resistance, inductance, and capacitance in a given RLC circuit using LCR meter and Multimeter.
- 10. Measurement of voltage, current and power in single phase circuit using voltmeter, ammeter and wattmeter. Calculate the power factor of the circuit.
- 11. Wiring of backup power supply including inverter, battery and load for domestic installations.
- 12. Demonstration and measurement of power consumption of electric iron, mixer grinder, single phase pump, exhaust fan, etc.

Expected outcome

- 1. Familiarity with supply arrangements and their limitations, knowledge of standard voltages and their tolerances, safety aspects of electrical systems and importance of protective measures in wiring systems.
- 2. Knowledge about the types of wires, cables and other accessories used in wiring. Creating awareness of energy conservation in electrical systems.
- 3. Students should be able to wire simple lighting circuits for domestic buildings, distinguish between light and power circuits.
- 4. To measure electrical circuit parameters and current, voltage and power in a circuit.
- 5. Familiarity with backup power supply in domestic installation.

Course		L-T-P-	Year of		
No.	Course Name	Credits	Introduction		
EC110	ELECTRONICS ENGINEERING	0 0 2 1	2015		
ECIIU	WORKSHOP 0-0-2-1		2015		
Course Obj	ectives				
This course	gives the basic introduction of electronic ha	ardware systems	and provides hands-on		
training with	n familiarization, identification, testing, as	sembling, disma	ntling, fabrication and		
repairing suc	ch systems by making use of the various	tools and instru	ments available in the		
Electronics V	Workshop.				
	List of Exercises / Experiments (Minin	mum of 8 manda	ntory)		
1. Familiar	ization/Identification of electronic comport	ents with specif	ication (Functionality,		
type, siz	e, colour coding, package, symbol, cost etc.	[Active, Passive	, Electrical, Electronic,		
Electro-	mechanical, Wires, Cables, Connectors, Fuse	es, Switches, Rela	ays, Crystals, Displays,		
Fastener	rs, Heat sink etc.)				
2. Drawing	g of electronic circuit diagrams using BIS/I	EEE symbols and	d introduction to EDA		
tools, In	terpret data sheets of discrete components an	d IC's, Estimatio	on and costing.		
3. Familiar	ization/Application of testing instruments a	and commonly us	sed tools. [Multimeter,		
Functior	n generator, Power supply, CRO etc.] [Solo	dering iron, De-s	oldering pump, Pliers,		
Cutters,	Wire strippers, Screw drivers, Tweezers, C	rimping tool, Ho	t air soldering and de-		
soldering	g station etc.]				
4. Testing	of electronic components [Resistor, Capac	itor, Diode, Trar	sistor, UJT and JFET		
using m	ultimeter.]				
5. Inter-con	nnection methods and soldering practice.	[Bread board,	Wrapping, Crimping,		
Solderin	g - types - selection of materials and sa	fety precautions,	soldering practice in		
connecto	ors and general purpose PCB, Crimping.]				
6. Printed of	circuit boards (PCB) [Types, Single sided, D	Oouble sided, PTH	I, Processing methods,		
Design	and fabrication of a single sided PCB for	a simple circuit	t with manual etching		
(Ferric c	hloride) and drilling.]				
7. Assembl	ling of electronic circuit/system on gene	ral purpose PCI	3, test and show the		
function	ing(Any Four circuits)				
1. Fixed	l voltage power supply with transformer, re	ectifier diode, ca	pacitor filter, zener/IC		
regula	ator.				
2. LED	D blinking circuit using a stable multi-vibrato	or with transistor]	BC 107.		
3. Squa	re wave generation using IC 555 timer in IC	base.			
4. Sine	wave generation using IC 741 OP-AMP in I	C base.			
5. RC coupled amplifier with transistor BC 107.					
6. AND) and NAND gates in diode transistor logic.				
8.Familiarization of electronic systems (Any three systems)					
	55				

- 1. Setting up of a PA system with different microphones, loud speakers, mixer etc.
- 2. Assembling and dismantling of desktop computer/laptop/mobile phones.
- 3. Coil/Transformer winding.
- 4. Identify the subsystems of TV, DTH, CCTV, Cable TV, CRO, Function generator etc.
- 5. Screen printing and PCB pattern transfer
- 6. Soldering & de-soldering of SMD using hot air soldering station.
- 7. Introduction to robotics- Familiarization of components (motor, sensors, battery etc.) used in robotics and assembling of simple robotic configurations.

Expected outcome

Student can identify the active and passive electronic components. Student gets hands-on assembling, testing, assembling, dismantling, fabrication and repairing systems by making use of the various tools and instruments available in the Electronics Workshop.

C	Course No.Course NameL-T-P- CreditsYear of Introduction					
0	CS110	COMPUTER SCIENCE WORKSHOP	0-0-2-1	2015		
Co	Course Objectives					
1.	To fam	iliarize students with basic hardware and sof	tware tools			
2.	To impl	ement algorithms studied in the course Introd	duction to Compu	ting & Problem		
	Solving					
3.	To learn	the implementation of control structures, Ite	erations and recur	sive functions, Lists,		
	Tuples a	and Dictionaries.				
4.	To imp	lement operations of files.				
5.	To impl	ement a small micro project using Python				
		List of Exercises / Experiments (Minin	mum of 8 manda	atory)		
Lis	st of Exe	rcises:				
Intr	oduction	Familiarization of hardware components of	a desktop compu	ter (motherboard,		
care	ds, memo	ry, slots, power, cables etc.) Familiarization	of Operating sys	tems and various tools,		
par	ticularly t	hose for scientific computing, open source to	ools etc.			
Pro	grammin	g exercises in Python based on the course Int	roduction To Co	mputing and Problem		
Sol	ving (BE	101-05). The exercises may include program	ns using the follo	owing concepts-		
1.]	Decision	making, branching and looping				
1	. Varia	bles, Expressions & Conditional statements	5			
2	2. Iterat	ion statements (While, For etc.)				
2.]	Function	& Function calls				
1	. Func	tion calls, Math functions				
2	2. Parar	neters and arguments				
	3. Addi	ng new functions, Recursion				
3. 1	Strings					
1	. String	g traversal				
2	2. String searching, Comparison					
	3. Other	r important String methods				
4.]	Lists, Tu	ples and Dictionaries				
1	1. Traversing List, List Operations					
		57				

- 2. Creation of Dictionary and Operations
- 3. Lists and Tuples

5. Files and Operations

- 1. Files defining, opening/closing, operations
- 2. Pickling

6. **Micro Project**: Students are expected to do a micro project by using Python, preferably related to the Web

Expected outcome

- 1. Students are able to identify common hardware components and their purpose
- 2. Students gain sufficient awareness about latest software tools.
- 3. Students are able to develop programs in Python for common problems of reasonable complexity.

Cou	Course No.Course NameL-T-P- CreditsYear of Introducti					
CH1	CH110 CHEMICAL ENGINEERING WORKSHOP 0-0-2-1 2015					
Cours	e Obj	ectives				
To im and de	part in monst	n students the basic knowledge in chemical e rations.	ngineering throug	h simple experiments		
		List of Exercises / Experiments (Mini	mum of 8 manda	atory)		
1. Pr	reparat	tion of soap				
2. D	etermi	nation of flash and fire point				
3. Pr	reparat	tion of Biodiesel				
4. Sp	pecific	gravity measurement				
5. Fa	abricat	tion of FRP laminates/ Study of filtration equ	upments			
6. St	tudy of	f distillation column				
7. St	tudy of	f absorption column				
8. St	tudy of	f heat exchanger				
9. St	tudy of	f size reduction equipment				
10. Pr	0. Preparation of Pigment					
Expected outcome						
Studen	Students will have a thorough understanding of the basic concepts that they learn in the theory					
paper '	"Introc	duction to Chemical Engineering".				